Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T11:19:04.116Z Has data issue: false hasContentIssue false

Measurement of Built-in Electrical Potential in Cu(In, Ga)Se2 Solar Cells

Published online by Cambridge University Press:  01 February 2011

C.-S. Jiang
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden CO 80401
F.S. Hasoon
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden CO 80401
H.R. Moutinho
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden CO 80401
H.A. Al-Thani
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden CO 80401
M.J. Romero
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden CO 80401
M.M. Al-Jassim
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden CO 80401
Get access

Abstract

The built-in electrical potential on cross sections of Cu(In, Ga)Se2 (CIGS) solar cells was measured quantitatively and resolved spatially using scanning Kelvin probe microscopy. In the conditions of open and short circuits, no significant potential variation on the p-n junction was probed due to the surface Fermi-level pinning. With an external reverse-bias voltage applied to the device, we were able to probe the potential on the junction; the potential profiles demonstrate that the p-n junction is a buried homojunction, located 30-80 nm from the CIGS/CdS interface in the CIGS film. The potential measurement over the CdS and ZnO layers, which is consistent with the band diagram calculations, indicates that the CdS and ZnO layers are inactive for the collection of photoexcited carriers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Contreras, M. A., Egaas, B., Ramanathan, K., Hiltner, J., Swartzlander, A., Hasoon, F., and Noufi, R., Prog. Photovolt. Res. Appl. 7, 311 (1999).Google Scholar
2. Ramanathan, K., Noufi, R., Granata, J., Webb, J., and Keane, J., Solar Energy Mat. Solar Cells 55, 15 (1998).Google Scholar
3. Contreras, Miguel A., Wiesner, H., Niles, D., Ramanathan, K., Matson, R., Tuttle, J., Keane, J., and Noufi, R., 25th PVSC; May 13-17, 1996; Washington, D.C. P809.Google Scholar
4.Forexample, see:Rau, U. and Schmidt, M., Thin Solid Films 387, 141 (2001); R. Klenk, Thin Solid Films 387, 135 (2001).Google Scholar
5. Ballif, C., Moutinho, H. R., and Al-Jassim, M. M., J. Appl. Phys. 89, 1418 (2001).Google Scholar
6. Jiang, C.-S., Moutinho, H.R., Geisz, J.F., Friedman, D. J., and Al-Jassim, M.M., Appl. Phy. Lett. 81, 2569 (2002).Google Scholar
7. Jiang, C.-S., Hasoon, F. S., Moutinho, H.R., Al-Thani, H. A., Romero, M.J., and Al-Jassim, M.M., Appl. Phys. Lett. 82, 127 (2003).Google Scholar
8. Jiang, C.-S., Moutinho, H.R., Friedman, D. J., Geisz, J.F., and Al-Jassim, M.M., J. Appl. Phys. (in press).Google Scholar
9.From the measurement of quantum efficiency.Google Scholar
10. Madelung, O., ‘Semiconductor: other than group IV elements and III-V compounds,’ (Springer-Verlag, New York, 1992).Google Scholar
11. Morkel, M., Weinhardt, L., Lohmuller, B., Heske, C., Umbach, E., Riedl, W., Zweigart, S., and Karg, F., Appl. Phys. Lett. 79, 4482 (2001).Google Scholar
12. Minemoto, T., Hashimoto, Y., Negami, T., Takamura, H., and Hamakawa, Y., J. Appl. Phys. 89, 8327 (2001).Google Scholar
13.For example, see: Choi, K. J. and Lee, J.-L., Appl. Phys. Lett. 74, 1108 (1999).Google Scholar
14. Syrbu, N. N., Bogdanash, M., Tezlevan, V. E., and Mushcutariu, I., Physica B 229, 199 (1997).Google Scholar
15.For example, see: Ohtake, Y., Okamoto, T., Yamada, A., Konagai, M., and Saito, K., Solar Energy Mat. Solar Cells 49, 269 (1997).Google Scholar