Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-12T09:18:16.727Z Has data issue: false hasContentIssue false

Mbe Growth of Rare-Earth Doped Fluoride Insulators on Semiconductors for Laser Applications

Published online by Cambridge University Press:  21 February 2011

M. Lui
Affiliation:
Hughes Research Laboratories, 3011 Malibu Canyon Road, Malibu, CA 90265
R.A. Mcfarlane
Affiliation:
Hughes Research Laboratories, 3011 Malibu Canyon Road, Malibu, CA 90265
D. Yap
Affiliation:
Hughes Research Laboratories, 3011 Malibu Canyon Road, Malibu, CA 90265
Get access

Abstract

With the recent success of using rare-earth doped fluoride crystals as high power visible upconversion lasers, we have explored the use of MBE grown fluoride layers for a possible waveguide laser. By confining the pumped light in a waveguide with dimensions on the order of a few micron, the pump power density will increase promoting higher efficiencies at room temperatures. Initially, we have grown planar waveguides of erbium doped ZnF2 on MgF2 substrates using molecular beam epitaxy and have formed channel waveguides by ion milling. By exciting individual channels with an 800 nm pump, we have generated strong upconversion fluorescence at 410 nm, 550 nm and 670 nm and at numerous weaker peaks. The fabrication techniques can be adapted to semiconductor substrates for making compact diode-pumped visible and infrared lasers. A number of fluoride materials that are useful as laser host crystals are lattice matched to GaAs (100) and GaAs (111) offering the possibility of integrating the channel waveguide laser with the semiconductor diode laser pump source. For example SrF2 may be grown on GaAs (100) as a cladding layer followed by PbF2 doped with a rare-earth ion. Also LaF3 may be grown on GaAs (111) followed by CeF3 doped with a rare-earth ion. Both PbF2 and CeF3 have low phonon energies and a higher index of refraction than their respective lattice matched cladding layers and should be capable of provide an attractive upconversion laser waveguide system. Our initial upconversion luminescence results on erbium doped PbF2 on GaAs (100) using a intervening SrF2 cladding layer are also reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Silversmith, A.J., Lenth, W., and Macfarlane, R.M., Appl. Phys. Lett. 51, 1977 (1987).Google Scholar
2. Macfarlane, R.M., Fong, F., Silversmith, A.J., and Lenth, W., Appl. Phys. Lett. 52, 1300 (1988).Google Scholar
3. McFarlane, R.A., Appl. Phys. Lett. 54, 2301 (1989).Google Scholar
4. Nguyen, D. C., Faulkner, G.E. and Dulick, M., Applied Optics 28, 3553 (1989).Google Scholar
5. McFarlane, R.A., Optics Lett. 16, 1397 (1991).Google Scholar
6. Hebert, T., Wannemacher, R., Macfarlane, R.M., and Lenth, W., Appl. Phys. Lett. 60, 2592 (1992).Google Scholar
7. Xie, P. and Rand, S.C., Optics Lett. 17, 1198 (1992).Google Scholar
8. Thrash, R. J., Compact Blue-Green Laser Technical Digest 6, 17 (1992).Google Scholar
9. Whitley, T.J., Millar, C.A., Wyatt, R., Brierley, M.C., and Szebesta, D., Electron. Lett. 27, 1785 (1991).Google Scholar
10. Grubb, S.G., Bennett, K.W., Cannon, R.S. and Humer, W.F., Electron. Lett. 28, 1243).Google Scholar
11. Allain, J.Y., Monerie, M. and Poignant, H., Electron. Lett. 26, 261 (1990).Google Scholar
12. Smart, R. G., Hanna, D.C., Tropper, A.C., Davey, S.T., Carter, S.F. and Szebesta, D., Electron. Lett. 27, 1307 (1991).Google Scholar
13. Lui, M., McFarlane, R.A. and Yap, D., Electron. Lett. 29, 172 (1993).Google Scholar
14. Chartier, I., Ferrand, B., Pelenc, D., Field, S.J., Hanna, D.C., Large, A.C., Shepherd, D.P., Tropper, A.C., Optics Lett. 17, 810 (1992).Google Scholar
15. Field, S.J., Hanna, D.C., Large, A.C., Shepherd, D.P., Tropper, A.C., Chandler, P.J., Townsend, P.D. and Zhang, L., Electron. Lett. 27, 2375 (1991).Google Scholar
16. Field, S.J., Hanna, D.C., Large, A.C., Shepherd, D.P., Tropper, A.C., Chandler, P.J., Townsend, P.D. and Zhang, L., Optics Lett. 17, 52 (1992).Google Scholar
17. Brinkmann, R., Sohle, W. and Suche, H., Electron. Lett. 27, 415 (1991).Google Scholar
18. Bausa, L.E., Legros, R., and Munoz-Yague, A., Appl. Phys. Lett. 59, 152 (1991).Google Scholar
19. Cho, C.C., Duncan, W.M., Lin, T.H., and Fan, S.K., Appl. Phys. Lett. 61, 1757 (1992).Google Scholar
20. Lui, M., Ramos, C.A., King, A.R., and Jaccarino, V., J. Appl. Phys. 67, 5518 (1990).Google Scholar
21. Lederman, D. and Nikroo, A. (to be published).Google Scholar
22. Optovac, Inc., North Brookfield, MA 01535.Google Scholar
23. Lui, M., King, A.R., Jaccarino, V., and Snider, G.L., Phys. Rev. B40, 4898 (1989).Google Scholar
24. Lui, M., thesis (unpublished), University of California, Santa Barbara, 1989.Google Scholar
25. Lui, M., King, A.R., Jaccarino, V., Farrow, R.F.C., and Parkins, S.S.P., Mat. Res. Soc. Symp. Proc. 187, 267 (1990).Google Scholar