Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-07T14:50:06.705Z Has data issue: false hasContentIssue false

Materials Design for the Low-Resistivity in p-Type ZnO and Transparent Ferromagnet With Transition Metal Atom Doped ZnO: Prediction vs. Experiment

Published online by Cambridge University Press:  10 February 2011

K. Sato
Affiliation:
Department of Condensed Matter Physics, The Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
H. Katayama-Yoshida
Affiliation:
Department of Condensed Matter Physics, The Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
T. Yamamoto
Affiliation:
Department of Electronic and Photonic System Engineering, Kochi University of Technology, Kochi 782-8502, Japan
Get access

Abstract

We propose a new valence control method of codoping with doping Ga (or In, Al) donor and N acceptor at the same time for the fabrication of a low-resistivity p-type ZnO based upon the ab initio calculation. We compare our predicted materials design to fabricate a low resistivity p-type ZnO with the recent successful codoping. Based upon the success in the valence control of ZnO, we propose a materials design to fabricate the ferromagnetic Mn-doped p-type ZnO upon codoping. It is shown that the anti-ferromagnetic state is more stable than the ferromagnetic ones due to the anti-ferromagnetic super-exchange interaction, if we have no mobile holes. Upon codoping with the mobile holes, it is shown that the ferromagnetic state becomes more stable than the anti-ferromagnetic ones due to the ferromagnetic double-exchange interaction. However, it is shown that the anti-ferromagnetic state is more stable upon electron doping due to the anti-ferromagnetic super-exchange interaction. We calculate the chemical trends of the magnetic state in V-, Cr-, Fe-, Co-, and Ni-doped (25 at%) in ZnO, and predict that all of these materials show the ferromagnetic ground states without electron and hole doping.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kasuga, M. and Ogawa, S., Jpn. J. Appl. Phys., 22, 794 (1983).Google Scholar
2 Sato, Y. and Sato, S., Thin Solid Films, 281–282, 445 (1996).Google Scholar
3 Minegishi, K., Koiwai, Y., Kikuchi, Y., Yano, K., Kasuga, M. and Shimizu, A., Jpn. J. Appl. Phys., 36 L1453 (1997).Google Scholar
4 Yamarnoto, T. and Katayama-Yoshida, H., Jpn. J. Appl. Phys. 38, L166 (1999).Google Scholar
5 Katayama-Yoshida, H. and Yamamoto, T., Applied to Japanese Patent (Fabrication method of low-resistivity p-type ZnO: JP H10-287966), and applied to USP and ECP.Google Scholar
6 Munekata, H., Ohno, H., Molnar, S. von, Segmüller, Armin, Chang, L. L., Esaki, L., Phys. Rev. Lett. 63, 1849 (1989).Google Scholar
7 Ohno, H., Munekata, H., Penney, T., Molnar, S. von, Chang, L. L., Phys. Rev. Lett. 68, 2664 (1992).Google Scholar
8 Munekata, H., Zaslavsky, A, Fumagalli, P., Gambino, R. J., Appl. Phys. Lett. 63, 2929 (1993).Google Scholar
9 Koshihara, S., Oiwa, A., Hirasawa, M., Katsumoto, S., lye, Y., Urano, C., Takagi, H., Munekata, H., Phys. Rev. Lett. 78, 4617 (1997).Google Scholar
10 Williams, A. R., Kübler, J. and Gellatt, C. D., Phys. Rev. B19, 6094 (1979).Google Scholar
11 Hedin, L. and Lundquist, B. I., J. Phys. C4, 3107 (1971), U. von Barth and L. Hedin, J. Phys. C5, 1629 (1972).Google Scholar
12 Joseph, M., Tabata, H., Kawai, T., Jpn. J. Appl. Phys. 38, L1205 (1999).Google Scholar
13 Akai, H., Akai, M., Blügel, S., Drittler, B., Ebert, H., Terakura, K., Zeller, R., Dederichs, P. H. Prog. Theo. Phys. Supplement 101, 11 (1990).Google Scholar
14 Moruzzi, V. L., Janak, J. F., Williams, A. R., Calculated Electronic Propertiesof Metals (Pergamon, U.S.A, 1978), p. 15.Google Scholar
15 Wyckoff, R. W. G. Crystal Structures, 2nd.Ed. (Krieger, 1986), p. 112.Google Scholar
16 Fukumura, T., Jin, Z. W., Ohtomo, A., Koinuma, H., Kawasaki, M., Appl. Phys. Lett. to be published.Google Scholar
17 Akai, H., Phys. Rev. Lett. 81, 3002 (1998).Google Scholar