Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-25T04:14:57.521Z Has data issue: false hasContentIssue false

Magnetoresistance in Spin Valves Based on Organic Semiconductors with Ferromagnetic Electrodes

Published online by Cambridge University Press:  01 February 2011

Hirokazu Tada
Affiliation:
tada@mp.es.osaka-u.ac.jp, Osaka University, Department of Materials Physics, 1-3 Machikaneyama, Toyonaka, N/A, Japan, +81-6-6850-6430, +81-6-6850-6430
Motoyasu Kakita
Affiliation:
kakita@molectronics.jp, Osaka University, Department of Materials Physics, 1-3 Machikaneyama, Toyonaka, 560-8531, Japan
Tomonori Ikegami
Affiliation:
ikegami@molectronics.jp, Osaka University, Department of Materials Physics, 1-3 Machikaneyama, Toyonaka, 560-8531, Japan
Tomohiro Nagano
Affiliation:
nagano@molectronics.jp, Osaka University, Department of Materials Physics, 1-3 Machikaneyama, Toyonaka, 560-8531, Japan
Iwao Kawayama
Affiliation:
kawayama@ile.osaka-u.ac.jp, Osaka University, Institute of Laser Engineering, 2-6 Yamadagaoka, Suita, 565-0871, Japan
Masayoshi Tonouchi
Affiliation:
tonouchi@ile.osaka-u.ac.jp, Osaka University, Institute of Laser Engineering, 2-6 Yamadagaoka, Suita, 565-0871, Japan
Get access

Abstract

We have prepared layered sandwich structures composed of Co / organic materials / La0.67Sr0.33MnO3 and measured the magnetic field effect on electrical resistance. We inserted various OMs including pentacene, C60, 8-hydroxy-quinoline aluminum and titanyl-phthalocyanine with a thickness in the range from 200 nm to 1,000 nm. All devises prepared showed clear spin-valve characteristics with magneto-resistance (MR) ratios of approximately a few to 10% at low temperature. It was found that spins were transported in rather thick organic films, and the polarity of MR depended upon materials inserted and their film thickness.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Xiong, Z. H., Wu, D., Vardeny, Z. V., Shi, J., Nature 427, 821 (2004).10.1038/nature02325Google Scholar
2. Majumdar, S., Laiho, R., Laukkanen, P., Väyrynen, I. J., Majumdar, H. S., Österbacka, R., Appl. Phys. Lett. 89, 122114 (2006).10.1063/1.2356463Google Scholar
3. Xu, W., Szulczewski, G. J., Leclair, P., Navarrete, I., Schad, R., Miao, G., Guo, H., Gupta, A., Appl. Phys. Lett. 90, 072506 (2007).10.1063/1.2435907Google Scholar
4. Wang, F. J., Yang, C. G., Vardeny, Z. V., Phys. Rev. B 75, 245324 (2007).10.1103/PhysRevB.75.245324Google Scholar
5. Santos, T. S., Lee, J. S., Migdal, P., Lekshmi, I. C., Satpati, B., Moodera, J. S., Phys. Rev. Lett. 98, 016601 (2007).10.1103/PhysRevLett.98.016601Google Scholar
6. Dürr, A. C., Schreiber, F., Kelsch, M., Carstanjen, H. D., Dosch, H., Adv. Mater. 14, 961 (2002).10.1002/1521-4095(20020705)14:13/14<961::AID-ADMA961>3.0.CO;2-X3.0.CO;2-X>Google Scholar
7. Goyal, A., Rajeswari, M., Shreekala, R., Lofland, S. E., Bhagat, S. M., Boettcher, T., Kwon, C., Ramesh, R., Venkatesan, T., Appl. Phys. Lett. 71, 17 (1997).Google Scholar
8. Teresa, J. M. De, Barthelemy, A., Fert, A., Contour, J. P., Montaigne, F., Seneor, P., Science 286, 507 (1999).10.1126/science.286.5439.507Google Scholar