Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-13T08:39:52.727Z Has data issue: false hasContentIssue false

Magnetoelectric Laminate Composites – Enhanced Magnetic Field Sensitivity, and High Voltage Gain

Published online by Cambridge University Press:  01 February 2011

Shuxiang Dong
Affiliation:
Materials Science & Engineering, Virginia Tech, Blacksburg, VA
Junyi Zhai
Affiliation:
Materials Science & Engineering, Virginia Tech, Blacksburg, VA
Zhengping Xing
Affiliation:
Materials Science & Engineering, Virginia Tech, Blacksburg, VA
Jie-Fang Li
Affiliation:
Materials Science & Engineering, Virginia Tech, Blacksburg, VA
D. Viehland
Affiliation:
Materials Science & Engineering, Virginia Tech, Blacksburg, VA
Get access

Abstract

In this paper, the magnetoelectric (ME) coupling and working modes are defined and discussed. Several types of ME laminate composites based on Terfenol-D, Fe-Ga magnetostrictive layers and piezoelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 crystal, Pb(Zr,Ti)O3 ceramic layers have been developed. Our experiments confirm that these ME composites have giant magnetoelectric voltage coefficients of ∼0.43×103 mV/Oe in the frequency range of 10-2<f<104 Hz under low magnetic bias. When operated under resonant conditions, the ME voltage coefficient is dramatically enhanced to maximum values as high as ∼20×103 mV/Oe. At resonance, our ME laminates have (i) a strong voltage gain effect; and (ii) an ultrahigh magnetic field sensitivity of near 10-12 Tesla.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Di Matteo, S, Jansen, AGM, Phys. Rev. B 66 (10), 100402 (2002).Google Scholar
2 Dzyaloshinskii, I.E., Sovit Phys.-JETP, 37, 81 (1959) [Sov. Phys. JETP 10, 628 (1960)].Google Scholar
3 Wiegelmann, L., Stepanov, A.A., Vitebsky, I.M., Jansen, A.G.M., and Wyder, P., Phys. Rev. B, 49, 10 039 (1994).Google Scholar
4 Wang, J., Neaton, J., Zheng, H., Nagarajan, V., Ogale, S., Liu, B., Viehland, D., Vaithyantham, V., Schlom, D., Wuttig, M., and Ramesh, R., Science 299, 1719 (2003).Google Scholar
5 Hur, N., Park, S., Sharma, P. A., Ahn, J. S., Guha, S., Cheong, S-W., Nature 429, 392 (2004).Google Scholar
6 , Kimura, Goto, T., Shintani, H., Ishizaka, K., Arima, T., Tokura, Y., Nature 426, 55 (2003).Google Scholar
7 Zheng, H., Wang, J., Lofland, S.E., Ma, Z., Mohaddes-Ardabili, L., Zhao, T., Salamanca-Riba, L., Shinde, S. R., Ogale, S.B., Bai, F., Viehland, D., Jia, Y., Schlom, D. G., Wuttig, M., Roytburd, A., Ramesh, R., Science, 303 (30), 661 (2004).Google Scholar
8 Nan, Ce Wen, Li, Ming, and Huang, Jin H., Phys. Rev. B, 63, 144415 (2001); Ce-Wen Nan, Phys. Rev. B, 50, 6082 (1994).Google Scholar
9 Ryu, J., Carazo, A. Vazquez, Uchino, K. and Kim, H., Jpn. J. Appl. Phys. 40 4948 (2001).Google Scholar
10 Lalestin, U., Padubnaya, N., Srinivasan, G., Devreugd, CP., Applied Physics A-Materials Science & Processing, 78 (1), 33 (2004).Google Scholar
11 Srinivasan, G., Rasmussen, E., Levin, B., and Hayes, R., Phys. Rev. B 65, 134402 (2002).Google Scholar
12 Ryu, J., Priya, S., Uchino, K., Kim, H.E., and Viehland, D., J. Korean Ceramic Society 39, 813817 (2002).Google Scholar
13 Srinivasan, G., Rasmussen, ET., and Hayes, R., Phys. Rev. B 67 (1), 014418 (2003).Google Scholar
14 Dong, S., Li, J.F., and Viehland, D., IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 50, no. 10, 1253 (2003).Google Scholar
15 Dong, S., Li, J.F., and Viehland, D., J. Appl. Phys., 96, 3382 (2004).Google Scholar
16 Dong, S., Cheng, J., Li, J.F., and Viehland, D., Appl. Phys. Lett., 83, 4812 (2003).Google Scholar
17 Dong, S., Li, J.F., and Viehland, D., Appl. Phys. Lett., 85, 5305 (2004).Google Scholar
18 Dong, S., Zhai, Junyi, Xing, Zhengping, Li, J.F., and Viehland, D., Appl. Phys. Lett., 86, 102901 (2005).Google Scholar
19 Dong, S., Li, J.F., and Viehland, D., Appl. Phys. Lett., 83, 4812 (2004).Google Scholar
20 Dong, S., Li, J.F., and Viehland, D., Appl. Phys. Lett., 85, 2307 (2004).Google Scholar
21 Dong, S., Li, J.F., and Viehland, D., Appl. Phys. Lett., 84, 4188 (2004), Appl. Phys. Lett., 85, 3534 (2004).Google Scholar
22 Dong, S., Li, J.F., and Viehland, D., IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 50, no. 10, 1236 (2003).Google Scholar
23 Dong, S., Li, J.F., and Viehland, D., IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 51, no. 7, 794 (2003).Google Scholar
24 Dong, S., Li, J.F., and Viehland, D., J. Appl. Phys., 97, no.8, (2005).Google Scholar
25 Engdahl, G., Magnetostrictive Materials Handbook, Academic Press, ISBN: 0-12-238640-X, (2000).Google Scholar