Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-19T06:26:27.593Z Has data issue: false hasContentIssue false

Magnetically Tuned Superconducting Filters

Published online by Cambridge University Press:  10 February 2011

D. E. Oates
Affiliation:
MIT Lincoln Laboratory, 244 Wood St., Lexington MA 02140-9108 oates@ll.mit.edu
A. C. Anderson
Affiliation:
MIT Lincoln Laboratory, 244 Wood St., Lexington MA 02140-9108 oates@ll.mit.edu
G. F. Dionne
Affiliation:
MIT Lincoln Laboratory, 244 Wood St., Lexington MA 02140-9108 oates@ll.mit.edu
Get access

Abstract

We have demonstrated magnetically tunable superconducting filters consisting of microwave circuits coupled to ferrite substrates in monolithic structures using both niobium at 4 K and YBCO at 77 K. A three-pole 1% bandwidth filter with 10-GHz center frequency, 1-dB insertion loss, and greater than 10% tunability has been demonstrated. Operation of the ferrite in the partially magnetized state prevents degradation of the surface resistance of the superconductor. This technology has the potential for compact, light weight, multipole filters with very low insertion loss, <0.5 dB, and very rapid tunability, <1 µs, due to the low inductance of the magnetic circuits. We also discuss the use of lightly coupled ferroelectric films to introduce trimming of the individual resonators in the magnetically tuned filters. The materials issues that limit performance and means to improve present performance are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Lancaster, M. J., Passive Microwave Device Applications of High Temperature Superconductors, (Cambridge University Press Cambridge, 1997).10.1017/CBO9780511526688Google Scholar
[2] Oates, D. E. and Dionne, G. F., 1997 MTTS Digest. 303 (1997).Google Scholar
[3] Oates, D. E. and Dionne, G. F., IEEE Trans. Appl. Supercond, 9, 4170 (1999).10.1109/77.783944Google Scholar
[4] Vendik, O. G., Ter-Martirosyan, L. T., Dedyk, A. I., Karmanenko, S. F., and Chakalov, R. A., Ferroelectrics 144, 33 (1993).10.1080/00150199308008622Google Scholar
[5] Miranda, F. A., Mueller, C. H., Koepf, G. A., and Yandrofski, R. M., Supercond. Sci. Technol. 8, 755 (1995).10.1088/0953-2048/8/10/003Google Scholar
[6] Dionne, G. F. and Oates, D. E., IEEE Trans. Magn. 33, 3421 (1997).10.1109/20.617964Google Scholar
[7] Findikoglu, A. T., Foltyn, S. R., Arendt, P. N., Groves, J. R., Jia, Q. X., Peterson, E. J., Wu, X. D., and Reagor, D. W., Appl. Phys. Lett. 69, 1626 (1996).10.1063/1.117052Google Scholar
[8] Jia, Q. X., Findikoglu, A. T., Arendt, P., Foltyn, S. R., Roper, J. M., Groves, J. R., Coulter, J. Y., Li, Y. Q., and Dionne, G. F., Appl. Phys. Lett. 72, 1763 (1998).10.1063/1.121177Google Scholar
[9] LeCraw, R. C. and Spencer, E. G., J. Phys. Soc. Japan 17, 401 (1962)Google Scholar