Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-13T14:15:07.829Z Has data issue: false hasContentIssue false

Magnetic X-Ray Circular Dichroism in Nickel-Gold Multilayers

Published online by Cambridge University Press:  15 February 2011

A. F. Jankowski
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94551-9900 U.S.A.
G. D. Waddill
Affiliation:
University of Missouri, Physics Department, Rolla, MO 65401-0249 U.S.A.
J. G. Tobin
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94551-9900 U.S.A.
Get access

Abstract

Magnetic circular dichroism in x-ray absorption is used to investigate the in-plane, remnant magnetization of well-characterized Ni0.48/Au0.52 multilayers. Large superlattice strains are found in this multilayer system for samples with a 2nm layer pair spacing. A larger dichroism is found in the Ni 2p absorption edge for a 1.8nm than for a 4.4nm layer pair sample. The larger dichroism is consistent with a larger magnitude of in-plane strain for the Ni layers and a larger total magnetic anisotropy energy as previously shown from magnetization curves.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tobin, J. G., Waddill, G. D. and Pappas, D. P., Phys. Rev. Lett. 68, 3642 (1992).Google Scholar
2. Jankowski, A., Waddill, G. D. and Tobin, J., Mat. Res. Soc. Symp. Proc. 313, 227 (1993).Google Scholar
3. Jankowski, A. F., Waddill, G. D. and Tobin, J. G., J. Vac. Sci. Technol. A 12, 2215 (1994).Google Scholar
4. Tobin, J., Jankowski, A., Waddill, G. and Sterne, P., Mat. Res. Soc. Symp. Proc. 343 (1994).Google Scholar
5. Jankowski, A. F., Superlatt. Microstruc. 6, 427 (1989).Google Scholar
6. Jankowski, A. F., J. Appl. Phys. 71, 1782 (1992).Google Scholar
7. Chaudhuri, J., Shah, S., Gondhalekar, V. and Jankowski, A., J. Appl. Phys. 71, 3816 (1992).Google Scholar
8. Chaudhuri, J., Alyan, S. and Jankowski, A., Thin Solid Films 219, 63 (1992).Google Scholar
9. Jankowski, A. F., J. Magn. Magn. Mat. 126, 185 (1993).Google Scholar
10. Childress, J. R., Chien, C. L. and Jankowski, A. F., Phys. Rev. B 45, 2855 (1992).Google Scholar
11. Wall, M. A. and Jankowski, A. F., Thin Solid Films 181, 313 (1989).Google Scholar
12. Tirsell, K. G. and Karpenko, V., Nucl. Instrum. Meth. A 291, 511 (1990).Google Scholar
13. Terminello, L. J., Waddill, G. D. and Tobin, J. G., Nucl. Instrum. Meth. A 319, 271 (1992).Google Scholar
14. Erskine, J. L. and Stern, E. A., Phys. Rev. B 12, 5016 (1975).Google Scholar
15. Thole, B. T. and van der Laan, G., Phys. Rev. A 38, 1943 (1988).Google Scholar
16. Thole, B. T. and van der Laan, G., Phys. Rev. B 42, 6670 (1990).Google Scholar
17. Thole, B. T., Carra, P., Sette, F. and Laan, G. vander, Phys. Rev. Lett. 68, 1943 (1992).Google Scholar
18. Carra, P., Thole, B. T., Altarelli, M. and Wang, X., Phys. Rev. Lett. 70, 694 (1993).Google Scholar
19. Tobin, J. G., Waddill, G. D., Jankowski, A. F., Sterne, P. A. and Pappas, D. P., (to be submitted).Google Scholar