Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-17T21:22:23.207Z Has data issue: false hasContentIssue false

Magnetic Superlattices

Published online by Cambridge University Press:  25 February 2011

Ivan K. Schuller*
Affiliation:
Physics Department B-019, University of California - San Diego La Jolla, California 92093
Get access

Abstract

Magnetic superlattices serve as model systems for the study of thin film, interfacial, proximity, coupling and superlattice phenomena. Due to these phenomena, the physical properties of magnetic superlattices can be tuned in a reproducible fashion by proper control of the preparation process.

Magnetic measurements in conjunction with detailed structural characterization provide a fruitful area of research, especially in understanding basic phenomena in magnetism. We describe here briefly a few experimental examples from our work which illustrate the possibilities magnetic superlattices offer for the study of basic phenomena in magnetism.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Thaller, B.J., Ketterson, J.B. and Hilliard, J.E., Phys. Rev. Lett. 41, 336 (1978).Google Scholar
2.“Synthetic Modulated Structures”, Chang, L.L. and Giessen, B.C., eds., Academic Press, Inc., Orlando (1985).Google Scholar
3.“Interfaces, Superlattices and Thin Films”, Dow, J.D. and Schuller, I.K., eds., Material Research Society Publishers, Pittsburgh, (1987).Google Scholar
4. “Physics, Fabrication and Applications of Multilayered Structures”, Dhez, P. and Weisbuch, C., eds., (in press).Google Scholar
5.Khan, M.R., Roach, P. and Schuller, I.K., Thin Solid Films, 122, 183 (1986).Google Scholar
6.Xiao, G. and Chien, C.L., J. Appl. Phys. 61,4061 (1987).Google Scholar
7.Wong, H.K. et al., J. Appl. Phys. 55, 2494 (1984).Google Scholar
8.Dillon, J.F. Jr, Gyorgy, E.M., Rupp, L.W. Jr, Yafet, Y. and Testardi, L.R., J. Appl. Phys. 52, 2256 (1981).Google Scholar
9.Pechan, M.J. and Schuller, I.K., Phys. Rev. Lett. 59, 132 (1987).Google Scholar
10.Zhou, W.S., Wong, H.K., Owers-Bradley, J.R. and Halperin, W.P.Physica 108B, 953 (1981).Google Scholar
11.Kwo, J. et al., Phys. Rev. Lett. 5, 1402 (1985).Google Scholar
12.Sinha, S. et al., J. Mag. Magn. Mat. 54, 773 (1986).Google Scholar
13.GrUnberg, P. and Mika, K., Phys. Rev. B27, 2955 (1983).Google Scholar
14.Camley, R.E., Rahman, T.S. and Mills, D., Phys. Rev. B 27,261 (1983).Google Scholar
15.Grimsditch, M., Khan, M., Kueny, A. and Schuller, I.K., J. Appl. Phys. 51, 498 (1983).Google Scholar
16.Kueny, A., Khan, M., Schuller, I.K. and Grimsditch, M., Phys. Rev..B29 2879 (1984).Google Scholar