Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T09:35:40.508Z Has data issue: false hasContentIssue false

Magnetic Structure of Multilayers from Soft-X-Ray Magnetic Circular Dichroism

Published online by Cambridge University Press:  15 February 2011

C. T. Chen
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
Y. U. Idzerda
Affiliation:
Naval Research Laboratory, Washington, D. C. 20375
C.-C. Kao
Affiliation:
National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973
L. H. Tjeng
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
H.-J. Lin
Affiliation:
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974
G. Meigs
Affiliation:
National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973
Get access

Abstract

Soft-x-ray magnetic circular dichroism (MCD) is the difference between the absorptivity or reflectivity of left and right circularly polarized soft-x-rays at the magnetically interesting L2,3- edges of 3d transition metals or the M4,5-edges of the 4f rare earth elements. Thanks to its large absorption cross-section and strong MCD effect, this technique has become a powerful new means for probing, in an element- and site-specific manner, the magnetic properties of ultra-thin films and multilayers. Soft-x-ray MCD experiments, recently conducted at the Dragon beamline, are utilized to demonstrate the recent progress in this technique and its applications in the research of magnetic thin films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schütz, G., Wagner, W., Wilhelm, W., Kienle, P., Zeller, R., Frahm, R., and Materlik, G., Phys. Rev. Lett. 58, 737 (1987).Google Scholar
2. Chen, C. T., Sette, F., Ma, Y., and Modesti, S., Phys. Rev. B 42, 7262 (1990).Google Scholar
3. Koide, T., Shidara, T., Fukutani, H., Yamaguchi, K., Fujimori, A., and Kimura, S., Phys. Rev. B 44, 4697 (1991).Google Scholar
4. Tjeng, L. H., Rudolf, P., Meigs, G., Sette, F., Chen, C. T., and Idzerda, Y. U., S. P. I. E. 1548, 160 (1991); L. H. Tjeng, Y. U. Idzerda, P. Rudolf, F. Sette, and C. T. Chen, J. Magn. Magn. Mater. 109, 288 (1992).Google Scholar
5. Tobin, J. G., Waddill, G. D., and Pappas, D. P., Phys. Rev. Lett. 68, 3642 (1992).Google Scholar
6. Wu, Y., Stöhr, J., Hermsmeier, B. D., Samant, M. G., and Weller, D., Phys. Rev. Lett. 70, 6947 (1993).Google Scholar
7. Chen, C. T., Idzerda, Y. U., Lin, H.-J., Meigs, G., Chaiken, A., Prinz, G. A., and Ho, G. H., Phys. Rev. B 48, 642 (1993).Google Scholar
8. Idzerda, Y. U., Tjeng, L. H., Lin, H.-J., Gutierrez, C. J., Meigs, G., and Chen, C. T., Phys. Rev. B, 48 (1993) 4144; Surf. Sci. 287/288, 741 (1993).Google Scholar
9. Tischer, M., Arvanitis, D., Yokoyama, T., Lederer, T., Troger, L., and Baberschke, K., Surf. Sci. 307–309, 1096 (1994).Google Scholar
10. O'Brien, W. L. and Tonner, B. P., Phys. Rev. B 49, 15370 (1994).Google Scholar
11. Wu, Y., Parkin, S. S. P., Stöhr, J., Samant, M. G., Hermsmeier, B. D., Koranda, S., Dunham, D., and Tonner, B. P., Appl. Phys. Lett. 63, 3726 (1994).Google Scholar
12. Idzerda, Y. U., Chen, C. T., Cheng, S.-F., Vavra, W., Prinz, G. A., Meigs, G., Lin, H.-J., and Ho, G. H., Appl. Phys. Lett. 64, 3503 (1994).Google Scholar
13. Kao, C.-C., Chen, C. T., Johnson, E. D., Hastings, J. B., Lin, H.-J., Ho, G. H., Meigs, G., Brot, J.-M., Hulbert, S. L., Idzerda, Y. U., and Vettier, C., Phys. Rev. B 50, 9599 (1994).Google Scholar
14. Chen, C. T., Nucl. Instrum. Methods Phys. Res. Sec. A 256, 595 (1987); C. T. Chen and F. Sette, Rev. Sci. Instrum. 60, 1616 (1989); C. T. Chen, Rev. Sci. Instrum., 63, 1229 (1992).Google Scholar
15. Sette, F., Chen, C. T., Ma, Y., Modesti, S., and Smith, N. V., in X-ray Absorption Fine Structure, edited by Hasnain, S. S. (Ellis Horwood Publishers, New York, 1991), p. 96; N. V. Smith, C. T. Chen, F. Sette, and L. Matthews, Phys. Rev. B 46, 1023 (1992).Google Scholar
16. Victora, R. H. and Falicov, L. M., Phys. Rev. B 31, 7335 (1985); P. M. Levy, K. Ounadjela, S. Zhang, Y. Wang, C. B. Sommers, and A. Fert, J. Appl. Phys. 67, 5914 (1990); D. Stoeffler, K. Ounadjela, and F. Gautier, J. Magn. Magn. Mater. 93, 386 (1991).Google Scholar
17. Jungblut, R., Roth, C., Hillebrecht, F. U., and Kisker, E., J. Appl. Phys. 70, 5923 (1991).Google Scholar
18. van der Laan, G. and Thole, B. T., Phys. Rev. B 43, 13401 (1991).Google Scholar
19. Erskine, J. L. and Stem, E. A., Phys. Rev. B 12, 5016 (1975); C. T. Chen, N. V. Smith, and F. Sette, Phys. Rev. B, 43, 6785 (1991).Google Scholar
20. Shirane, G. and Takei, W. J., J. Phys. Soc. Japan 17 Suppl. B III, 35 (1962).Google Scholar
21. See, for example, Chikazumi, S., Physics of Magnetism, Kreiger, (Boca Raton Publishers, Florida, 1986).Google Scholar
22. Thole, B. T., Carra, P., Sette, F., and van der Laan, G., Phys. Rev. Lett. 68, 1943 (1992).Google Scholar
23. Carra, P., Thole, B. T., Altarelli, M., and Wang, X., Phys. Rev. Lett. 70, 694 (1993).Google Scholar
24. Vogel, J. and Sacchi, M., Phys. Rev. B 49, 3230 (1994); Y. U. Idzerda, C. T. Chen, H.-J. Lin, G. Meigs, G. H. Ho, and C.-C. Kao; Nucl. Instr. Methods in Phys. Res. A 347, 134 (1994).Google Scholar
25. Guo, G. Y., Ebert, H., Temmerman, W. M., and Durham, P. J., Metallic Alloy: Experimental and Theoretical Perspectives, edited by Faulkner, J. S. (Kluwer Academic Publishers, Dordrecht, 1993); G. Y. Guo, H. Ebert, W. M. Temmerman, and P. J. Durham, Phys. Rev. B, submitted for publication.Google Scholar
26. Wu, R., Wang, D., and Freeman, A. J., Phys. Rev. Lett. 71, 3581 (1993); R. Wu and A. J. Freeman, Phys. Rev. Lett. 73, 1994 (1994).Google Scholar
27. Chen, C. T., Idzerda, Y. U., Lin, H.-J., Smith, N. V., Meigs, G., Chaban, E., Ho, G. H., Pellegrin, E., and Sette, F., Phys. Rev. Lett., submitted for publication.Google Scholar
28. Bonnenberg, D., Hempel, K. A., and Wijn, H. P. J., Magnetic Properties of 3d, 4d, and 5d Elements. Alloys. and Compounds, edited by Hellwege, K.-H. and Madelung, O. (Landolt- Bornstein, New Series, Vol. III/19a, Springer-Verlag Publishers, Berlin, 1986), p. 178; and references therein.Google Scholar
29. Söderlind, P., Eriksson, O., Johansson, B., Albers, R. C., and Boring, A. M., Phys. Rev. B 45, 12911 (1992).Google Scholar
30. The n3d reported in Ref 25 (Ref 26) are 6.57 (6.66) for Fe and 7.57 (7.45) for Co. We used their average values, i.e. 6.61 for Fe and 7.51 for Co, in the sum-rule analysis.Google Scholar
31. The thresholds for the two-step-like function were set to the peak positions of the L3 and L2 white lines. The height of the L3 (L2) step function was set to 2/3 (1/3) of the average intensity of the last 15 eV of the spectra, according to the quantum degeneracy, 2j+l. Each step function was then convoluted with a Voigt function to simulate the intrinsic linewidth and experimental resolution. However, the convolution procedure has negligible effect on the SX-MCD results shown in Table 1. We found that a 1 eV shift in the threshold position causes only an ∼5 % change in the deduced orbital and spin moments.Google Scholar
32. Yeh, P., Optical Waves in Layered Media, (Wiley Publishers, New York, 1988).Google Scholar