Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-04T11:46:47.124Z Has data issue: false hasContentIssue false

Magnetic Alignment of Carbon Nanofibers in Polymer Composites

Published online by Cambridge University Press:  01 February 2011

Donglu Shi
Affiliation:
Dept. of Chemical and Materials Engineering, University of Cincinnati Cincinnati, OH 45221
Peng He
Affiliation:
Dept. of Chemical and Materials Engineering, University of Cincinnati Cincinnati, OH 45221
Jie Lian
Affiliation:
Dept. of Nuclear Engineering and Radiological Science, University of Michigan Ann Arbor, MI 48109
Xavier Chaud
Affiliation:
Consortium de Recherches pour l'Emergence de Technologies Avancées, CNRS, BP 166, F-38042 Grenoble Cedex 9, France
Eric Beaugnon
Affiliation:
Consortium de Recherches pour l'Emergence de Technologies Avancées, CNRS, BP 166, F-38042 Grenoble Cedex 9, France
Lumin Wang
Affiliation:
Dept. of Nuclear Engineering and Radiological Science, University of Michigan Ann Arbor, MI 48109
Rodney C. Ewing
Affiliation:
Dept. of Nuclear Engineering and Radiological Science, University of Michigan Ann Arbor, MI 48109
Robert Tournier
Affiliation:
Consortium de Recherches pour l'Emergence de Technologies Avancées, CNRS, BP 166, F-38042 Grenoble Cedex 9, France
Get access

Abstract

Carbon nanofibers were well aligned in polymer composite magnetically at moderate fields up to 3 T. Due to the NiO-coating, carbon nanofibers exhibited strong magnetic moments that lead to alignment. Both TEM and SEM results showed the well-aligned nano-fibers in a polymer matrix. Mechanical testing showed a pronounced anisotropy in tensile strength in directions normal (12.1MPa) and parallel (22MPa) to the applied field, resulting from the well-aligned nanofibers in the polymer matrix. The mechanism of magnetic alignment due to coating of NiO on the nano fiber surface is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Iijima, S., Nature 354, 56 (1991).Google Scholar
2. Baughman, R. H., Cui, C., Zakhidov, A. A., Iqbal, Z., Barisci, J. N., Spinks, G. M., Wallace, G. G., Mazzoldi, A., De Rossi, D., Rinzler, A. G., Jaschinski, O., Roth, S., and Kertesz, M., Science 284, 1340 (1999).Google Scholar
3. Gao, M., Dai, L., Baughman, R. H., Spinks, G. M., Wallace, G. G., Electroactive Polymer Actuators and Devices (SPIE Proceedings, 2000) p. 1824.Google Scholar
4. Hadjiev, V. G., Iliev, M. N., Arepalli, S., Nikolaev, P., and Files, B. S., Appl. Phys. Lett. 78, 3193 (2001).Google Scholar
5. Liu, C., Cheng, H. M., Cong, H. T., Li, F., Su, G., Zhou, B. L., and Dresselhaus, M. S., Adv. Mater. 12, 1190 (2000).Google Scholar
6. Walters, D. A., Casavant, M. J., Qin, X. C., Huffman, C. B., Boul, P. J., Ericson, L. M., Haroz, E. H., O'Connell, M. J., Smith, K., Colbert, D. T., and Smalley, R. E., Chem. Phys. Lett. 338, 14 (2001).Google Scholar
7. Zhu, J., Kim, J. D., Peng, H. Q., Margrave, J. L., Khabashesku, V. N., and Barrera, E. V., Nano Letters 3, 1107 (2003)Google Scholar
8. Tostenson, E. T. and Chou, T. W., J. Phys. D 35, L77 (2002).Google Scholar
9. Cadek, M., Coleman, J. N., Barron, V., Hedicke, K., and Blau, W. J., Appl. Phys. Lett. 81, 5123 (2002).Google Scholar
10. Frankland, S. J. V., Harik, V. M., Odegard, G. M., Brenner, D. W. and Gates, T. S., Composites Science and Technology 63, 1655 (2003).Google Scholar
11. Garmestani, H., Al-Haik, M. S., Dahmen, K., Tannenbaum, R., Li, D., Sablin, S. S. and Hussaini, M. Y., Adv. Mater. 15, 1918 (2003).Google Scholar
12. Choi, E. S., Brooks, J. S., Eaton, D. L., Al-Haik, M. S., Hussaini, M. Y., Garmestani, H., Li, D. and Dahmen, K., J. Appl. Phys. 94, 6034, (2003).Google Scholar
13. Kimura, T., Ago, H., Tobita, M., Ohshima, S., Kyotani, M. and Yomura, M., Adv. Materi. 14, 1380 (2002).Google Scholar