Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T16:40:37.440Z Has data issue: false hasContentIssue false

Macroporous Thermosets via Chemically Induced Phase Separation

Published online by Cambridge University Press:  15 February 2011

J. Kiefer
Affiliation:
Swiss Federal Institute of Technology, Materials Department, Polymers Laboratory CH-1015 Lausanne, Switzerland
R. Porouchani
Affiliation:
Swiss Federal Institute of Technology, Materials Department, Polymers Laboratory CH-1015 Lausanne, Switzerland
D. Mendels
Affiliation:
Swiss Federal Institute of Technology, Materials Department, Polymers Laboratory CH-1015 Lausanne, Switzerland
J. B. Ferrer
Affiliation:
Swiss Federal Institute of Technology, Materials Department, Polymers Laboratory CH-1015 Lausanne, Switzerland
C. Fond
Affiliation:
CNRS, Institut Charles Sadron, 6 rue Boussingault, F-67083 Strasbourg
J. L. Hedrick
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road San Jose, California 95120-6099
H. H. Kausch
Affiliation:
Swiss Federal Institute of Technology, Materials Department, Polymers Laboratory CH-1015 Lausanne, Switzerland
J. G. Hilborn
Affiliation:
Swiss Federal Institute of Technology, Materials Department, Polymers Laboratory CH-1015 Lausanne, Switzerland
Get access

Abstract

We have explored a new technology based on chemically induced phase separation that yields porous epoxies and cyanurates with a closed cell morphology and micrometer sized pores with a narrow pore size distribution. When the precursor monomers are cured in the presence of a low molecular weight liquid, the desired morphology results from a phase separation and a chemical quench. After phase separation, the porosity is achieved by thermal removal of the secondary liquid phase, specifically by diffusion through the crosslinked matrix. In respect to the thermodynamics and kinetics, the origin of the phase separation process can be identified as nucleation and growth. The influence of internal and external reaction parameters, such as chemical nature of the low molecular weight liquid, its concentration and the curing temperature on the final morphology are presented. Thus, the morphology can be controlled ranging from a monomodal to bimodal pore size distribution with pore sizes inbetween 1 to 10 μm. These porous thermosets are characterized by a significantly lower density, without any loss in thermal stability compared to the neat matrix. Such new materials demonstrate great interest for lowering the dielectric constant and for improving the fundamental understanding of the role of voids in stress relaxation and toughening.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hedrick, J. L., Hilbom, J., Palmer, T. D. and Labadie, J. W., J. Polym. Sci., Part A: Polym. Chem. 28 (1990) 2255–68.Google Scholar
2. Hedrick, J. L. and Russell, T. P., MRS Symp. Proc. 274 (1992) 3745.Google Scholar
3. Hedrick, J. L., Charlier, Y. and Russell, T. P., MRS Symp. Proc. 323 (1994) 277 Google Scholar
4. Hedrick, J. L., Charlier, Y. and Jerome, R., High Perform. Polym. 7 (1995) 133–47.Google Scholar
5. Hedrick, J. L., Russell, T. P., Labadie, J., Lucas, M. and Swanson, S., Polymer 36 (1995) 2685–97.Google Scholar
6. Leterrier, Y., Manson, J. A. E., Hilborn, J. G., Plummer, C. J. G. and Hedrick, J. L., MRS Symp. Proc. 371 (1995) 487–93.Google Scholar
7. Leterrier, Y., Hilborn, J. G., Plummer, C. J. G. and Hedrick, J. L., MRS Symp. Proc. 371 (1995) 481–8.Google Scholar
8. Balde, J. and Messner, G., Circuit World 14 (1987) 1114.Google Scholar
9. Carter, K. C., Sanchez, M. I., Russell, T. P. and McGrath, J. E., Polym. Mat. Sci. Eng. 72 (1995) 383.Google Scholar
10. Riew, C. K. and Kinloch, A. J., Toughened Plastics: Science and Engineering Adv. Chem. Ser. 233 (1993).Google Scholar
11. Collyer, A. A., Rubber toughened engineering plastics (Chapman&Hall, London, 1994).Google Scholar
12. Pearson, R. and DiBerardino, M., 25th Int. SAMPE Techn. Conf (1993) 502Google Scholar
13. Huang, Y., Hunston, D. L., Kinloch, A. J. and Riew, C. K., Adv. Chem. Ser. 233 (1993) 135.Google Scholar
14. Dompas, D., Groeninckx, G., Isogawa, M., Hasegawa, T. and Kadokura, M.,Polymer 35 (1994) 4750–9.Google Scholar
15. Bubeck, R. A., Buckley, D. J. J., Kramer, E. J. and Brown, H. R., J. Mat. Sci. 26 (1991) 6249–59.Google Scholar
16. Huang, Y. and Kinloch, A. J., J. Mat. Sci. 27 (1992) 2763–9.Google Scholar
17. Huang, Y. and Kinloch, A. J., J. Mat. Sci. Lett. 27 (1992) 2753–62.Google Scholar
18. Guild, F. J. and Kinloch, A. J., J. Mat. Sci. 30 (1995) 1689–97.Google Scholar
19. Mendels, D., Ferrer, J. B., Kiefer, J. and Fond, Ch., Semester project (1996) EPFL, Materials Department, Polymers Laboratory, 1015 Lausanne, SwitzerlandGoogle Scholar
20. Huang, Y. and Kinloch, A. J., J. Mat. Sci. Lett. 11 (1992) 484–7.Google Scholar
21. Dompas, D. and Groeninckx, G., Polymer 35 (1994) 4743–9.Google Scholar
22. Lazzeri, A. and Bucknall, C. B., J. Mat. Sci. 28 (1993) 6799–808.Google Scholar
23. Bucknall, C. B., Karpodinis, A. and Zhang, X. C., J. Mat. Sci. 29 (1994) 3377–83.Google Scholar
24. Huang, Y. and Kinloch, A. J., Polymer 33 (1992) 1330–2.Google Scholar
25. Bagheri, R. and Pearson, R. A., Polymer 36 (1995) 4883–5.Google Scholar
26. Pascault, J. P., Macromol. Symp. 93 (1995) 4351.Google Scholar
27. Kiefer, J., Hilborn, J. G., Månson, J.-A. E., Leterrier, Y. and Hedrick, J. L., Macromolecules 29 (1996) to appearGoogle Scholar
28. Kiefer, J., Hilborn, J. G. and Hedrick, J. L., Polymer 37 (1996) submitted.Google Scholar
29. Porouchani, R., Diploma Work, EPFL (1996), 1015 Lausanne, SwitzerlandGoogle Scholar
30. Champétier, G., Buvet, R., Néel, J. and Sigwalt, P., Chimie macromoléculaire (Hermann, Paris, 1972).Google Scholar
31. David, D. J. and Sincock, T. F., Polymer 33 (1992) 4505–14.Google Scholar
32. Kiefer, J., Hilborn, J. G., Hedrick, J. L. and Yoon, D. Y., manuscript in preparation.Google Scholar
33. Hamerton, I., Chemistry and Technology of Cyanate Ester Resins (Blackie Academic & Professionel, Glasgow, 1994).Google Scholar