Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-02T13:20:01.885Z Has data issue: false hasContentIssue false

Low-Dimensional Critical Behaviors and Competition Between Order Parameters in the Organic Metal (Tmtsf)2ClO4

Published online by Cambridge University Press:  25 February 2011

F. Pesty
Affiliation:
Laboratoire de Physique des Solides, Associé au C.N.R.S., U.P.S., Beit 510 91405 Orsay Cedex, (FRANCE)
P. Garoche
Affiliation:
Laboratoire de Physique des Solides, Associé au C.N.R.S., U.P.S., Beit 510 91405 Orsay Cedex, (FRANCE)
M. Heritier
Affiliation:
Laboratoire de Physique des Solides, Associé au C.N.R.S., U.P.S., Beit 510 91405 Orsay Cedex, (FRANCE)
Get access

Abstract

In low-dimensional conductors, the instability of the metallic state can lead to the formation at low temperature of a spin density wave induced by the magnetic field (FISDW). The transition results from the complex interplay between the one dimensional instability of the electronic gas and the quantization of the magnetic field’s flux. This second-order phase-transition line has been investigated by measuring both specific heat and thermal conductivity along the c* direction. The mean-field jump and the gap value have been deduced respectively from the anomaly and the exponential decay of the electronic specific heat. The coupling strength λ has been evaluated, and the λ > 0.3 value indicates clearly a strong coupling behavior at high field. Below 8 teslas, the specific heat displays a double anomaly in relation with the competition between subphases. Above the second-order transition line, critical fluctuations are observed on both specific heat and lattice thermal conductivity. Along this line, one-dimensional fluctuations increase with increasing magnetic field. It is proposed that the very high field reentrance of the metal is to be related to enhancement of the 1D fluctuations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.For a review of experimental and theoretical results on the Bechgaard salts, see: Proc. of ICSM’88, Santa Fe, Syn’. Metals 27–29 (19881989).Google Scholar
2. Gor’kov, L.P. and Lebed, G.’, J. Phys. (Paris) Lett. 45, L-433 (1984).CrossRefGoogle Scholar
3. Héritier, M., Montambaux, G. and Lederer, P., J. Phys. (Paris) Lett. 45, L-943 (1984).CrossRefGoogle Scholar
4. Yamaji, K., Syn. Metals 13, 29 (1986).Google Scholar
5. Ya Azbel, M., Bak, P. and Chaikin, P.M., Phys. Rev. A34, 1392 (1986).Google Scholar
6. Virosztek, A., Chen, L. and Maki, K., Phys. Rev. B34, 3371 (1986).CrossRefGoogle Scholar
7. Ulmet, J.P., khmou, A., Auban, P. and Bachere, L., Sol. State Commun. 58, 753 (1986).CrossRefGoogle Scholar
8. Osada, T., Miura, N. and Saito, G., Physica 143B, 403 (1986).Google Scholar
9. Naughton, M.J., Chamberlin, R.V., Yan, X., Hsu, S.-Y., Chiang, L.Y., Ya Azbel, M. and Chaikin, P.M., Phys. Rev. Lett. 61, 621 (1988).CrossRefGoogle Scholar
10. Pesty, F. and Garoche, P., Proceedings of Dubrovnik’89, to be published in Fizika (Yugoslavia).Google Scholar
11. Pesty, F. and Garoche, P., to be published.Google Scholar
12. Sullivan, P.F. and Seidel, G., Phys. Rev. 173, 679 (1968).CrossRefGoogle Scholar
13. Ǡngström, A.J., Annln Phys. 114, 513 (1861).Google Scholar
14. Djurek, D., Prester, M., Jérome, D. and Bechgaard, K., J. Phys. C15, L669 (1982).Google Scholar
15. Choi, M.-Y., Chaikin, P.M. and Greene, R.L., Phys. Rev. B34, 7727 (1986).CrossRefGoogle Scholar
16. Djurek, D., Knezovic, S. and Bechgaard, K., Mol. Cryst. Liq. Cryst. 119, 161 (1985).Google Scholar
17. Kittel, C., Introduction to Solid State Physics (Wisley, 1953), 139.Google Scholar
18. Pesty, F., Garoche, P. and Bechgaard, K., Mol. Cryst. Liq. Cryst. 119, 251 (1985).CrossRefGoogle Scholar
19. Landau, L. and Lifshitz, E., Statistical Physics (Pergamon, 1980), 206.Google Scholar
20. Pesty, F., Faini, G. and Garoche, P., J. Appl. Phys. 63, 3061 (1988).CrossRefGoogle Scholar
21. Naughton, M.J., Brooks, J.S., Chiang, L.Y., Chamberlain, R.V. and Chaikin, P.M., Phys. Rev. Lett. 55, 969 (1985).CrossRefGoogle Scholar
22. Bardeen, J., Cooper, L.N. and Schrieffer, J.R., Phys. Rev. 108, 1175 (1957).CrossRefGoogle Scholar
23. Goodman, B.B., Compt. Rend. (France) 244, 2899 (1957).Google Scholar
24. Nowotny, H., Grau, D. and Hittmair, O., Phys. Stat. Sol. 61, 569 (1974).CrossRefGoogle Scholar
25. Neighbor, J.E., Cochran, J.F. and Shiffman, C.A., Phys. Rev. 155, 384 (1967).CrossRefGoogle Scholar
26. Héritier, M., Pesty, F. and Garoche, P., to be published in New Trends in Magnetism, Eds Rezende, S. and Cotinhio Filho, M. (Scientific World, 1989).Google Scholar