Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-16T10:51:52.577Z Has data issue: false hasContentIssue false

Low-Coverage Laser Desorption of Ions on Chlorinated Copper Surfaces

Published online by Cambridge University Press:  26 February 2011

L. Chen
Affiliation:
Microelectronics Sciences Laboratories, Columbia University, New York, New York 10027
V. Liberman
Affiliation:
Microelectronics Sciences Laboratories, Columbia University, New York, New York 10027
J.A. O'Neill
Affiliation:
Microelectronics Sciences Laboratories, Columbia University, New York, New York 10027
R.M. Osgood Jr.
Affiliation:
Microelectronics Sciences Laboratories, Columbia University, New York, New York 10027
Get access

Abstract

Experiments were performed to investigate the pulsed excimer laser etching of a chlorinated copper substrate. Time-of-flight mass spectrometric techniques were employed to characterize the mass and velocity distributions of both neutral and ionic species that desorb at laser fluences less than that required to melt bulk Cu or CuCl substrates. The presence of positively charged ions in this work is examined in terms of both photon and electron mediated desorption mechanisms.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Chuang, T.J., J. Vac. Sci. Technol. 21 798 (1982).Google Scholar
2 Ehrlich, D.J., and Tsao, J.Y., J. Vac. Sci. Technol. B 1 969 (1983).Google Scholar
3 Osgood, R.M. Jr., Ann. Rev. Phys. Chem. 34 77 (1983).Google Scholar
4 Winters, H.F., J. Vac. Sci. Technol. A3 786 (1985).Google Scholar
5 van Veen, G.N.A., Baller, T., DeVries, A.E., J. Appl. Phys. 60 3746 (1986).Google Scholar
6 Goddard, P.J., and Lambert, R.M., Surf. Sci. 67 180 (1977).Google Scholar
7 Citrin, P.H., Hannann, D.R., Matthews, L.J., and Rowe, J.E., Phys. Rev. Lett. 49 1712 (1982).Google Scholar
8 Sesselmann, W., Marinero, E.E., and Chuang, F.J., Appl. Phys. A 41 209 (1986).Google Scholar
9 Chen, L., Liberman, V., O'Neill, J.A., Wu, Z., and Osgood, R.M., “UV-Induced Ion Emission from Semiconductor Surfaces,” manuscript in preparation.Google Scholar
10 Sesselmann, W. and Chuang, T.J., Surf. Sci. 176, 32, 67 (1986).Google Scholar
11 Visivanathan, R., and Hussla, I., J. Opt. Sci. Am. B 3 796 (1986).Google Scholar
12 Chuang, T.J., J. Vac. Sci. Technol. B 3 1408 (1985).Google Scholar
13 Menzel, D. and Gomer, R., J. Chem. Phys. 41, 3311 (1964).Google Scholar
14 Redhead, P.A., Can. J. Phys. 42, 866 (1964)Google Scholar
15 Cox, M.P., Foord, J.S., Lambert, R.M., and Prince, R.H., Surf. Sci. 129 399 (1983).Google Scholar
16 Madey, J.E. and Yates, J.T. Jr., J. Vac. Sci. Technol. 8 525 (1971).Google Scholar
17 Poteus, J.O., Surf. Sci. 41 515 (1974).Google Scholar
18 Thomas, S. and Haas, T.W., J. Vac. Sci. Technol. 8 840 (1972).Google Scholar
19 Strupp, P.G., Grant, J.L., Stair, P.C., and Weitz, E., Presented at A.V.S. 34th Nat. Symp., Anaheim, CA, 1987 (unpublished).Google Scholar
20 Kubiak, G., Sandia Nat. Lab. (private communication).Google Scholar
21 Bechtel, J.H., Smith, W.L., and Bloembergen, N., Phys. Rev. B 15 4557 (1977).Google Scholar