Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T16:33:20.638Z Has data issue: false hasContentIssue false

Low Voltage Tunable One Dimensional Photonic Crystal with Large Air Defects

Published online by Cambridge University Press:  01 February 2011

Yasha Yi
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, U.S.A.
Peter Bermel
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, U.S.A.
Kazumi Wada
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, U.S.A.
Xiaoman Duan
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, U.S.A.
John D. Joannopoulos
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, U.S.A.
Lionel C. Kimerling
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, U.S.A.
Get access

Abstract

A one-dimensional Si/SiO2 photonic crystal with a large, tunable air defect cavity is fabricated. Multiple resonant modes are observed within the photonic band gap. The free spectral range (FSR) is large compared to other resonant structures, with more than 100nm bandwidth. Simultaneous low voltage tuning around two telecom wavelengths, 1.55μm and 1.3μm, is realized using electrostatic force. The whole process is at low temperature and can be CMOS compatible. Potential applications include switching, modulation, and wavelength conversion devices, particularly WDM devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hache, A. and Bourgeois, M., Appl. Phys. Lett., 77, 4089 (2000)Google Scholar
2. Busch, K. and John, S., Phys. Rev. Lett. 83, 967 (1999).Google Scholar
3. Yablonovitch, E., Phys. Rev. Lett. 58, 2059 (1987); S. John, Phys. Rev. Lett. 58, 2486 (1987).Google Scholar
4. Joannopoulos, J. D., Meade, R. D., and Winn, J. N., Photonic Crystals: Molding the Flow of Light (Princeton, 1995).Google Scholar
5. See Photonic Band Gap Materials, Soukoulis, C. M., ed., Vol. B308 of NATO ASI Series (Kluwer Academic, Dordrecht, The Netherlands, 1996).Google Scholar
6. Foresi, J. S., Villeneuve, P. R., Ferrera, J., Thoen, E. R., Steinmeyer, G., Fan, S., Joannopoulos, J. D., Kimerling, L. C., Smith, H. I., and Ippen, E. P., Nature, 390, 143 (1997).Google Scholar
7. Mekis, A., Chen, J. C., Kurland, I., Fan, S., Villeneuve, P. R., and Joannopoulos, J. D., Phys. Rev. Lett. 77, 3787 (1996).Google Scholar
8. Kimerling, L. C., “Silicon Microphotonics”, Applied Surface Science, 159, 8 (2000).Google Scholar
9. Fitzgerald, E. A. and Kimerling, L. C., MRS Bull., 23, 39 (1998)Google Scholar