Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-08T09:38:52.219Z Has data issue: false hasContentIssue false

Low Temperature Preparation of Gallium Nitride Thin Films

Published online by Cambridge University Press:  25 February 2011

Roy G. Gordon
Affiliation:
Department of Chemistry, Harvard University, 12 Oxford Street, Cambridge, MA 02138
David M. Hoffman
Affiliation:
Department of Chemistry, Harvard University, 12 Oxford Street, Cambridge, MA 02138
Umar Riaz
Affiliation:
Department of Chemistry, University of Houston, Houston, TX 77204
Get access

Abstract

Gallium nitride thin films were prepared by atmospheric pressure chemical vapor deposition from hexakis(dimethylamido)digallium, Ga2(NMe2)6, and ammonia precursors at substrate temperatures of 100–400 °C with growth rates up to 1000 Å/min. The films were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, Rutherford backscattering spectrometry and forward recoil spectrometry. The N/Ga ratio varied from 1.05 for films deposited at 400 °C to 1.5 at 100 °C. The hydrogen concentration increased from 10 atom % for films deposited at 400 °C to 24 atom % at 100 °C. Films deposited at 100 °C were amorphous but films deposited at higher temperatures were polycrystalline. Bandgaps of the films varied from 3.8 eV for films deposited at 400 °C to 4.2 eV at 100 °C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pankove, J. I., Mater. Res. Soc. Symp. Proc. 162, 515 (1990).Google Scholar
2. Davis, R. F., Sitar, Z., Williams, B. E., Kong, H. S., Kim, H. J., Palmour, J. W., Edmond, J. A., Ryu, J., Glass, J. T., Carter, C. H. Jr, Mat. Sci. Eng. B1, 77 (1988).Google Scholar
3. Akasaki, I., Amano, H., Koide, Y., Hiramatsu, K., Sawaki, N., J. Cryst. Growth 98, 209 (1989).Google Scholar
4. Maruska, H. P., Tietjen, J. J., Appl. Phys. Lett. 15, 327 (1969).Google Scholar
5. Born, P. J., Robertson, D. S., J. Mater. Sci 15, 3003 (1980).Google Scholar
6. Chu, T. L., J. Electrochem. Soc. 118, 1200 (1971).Google Scholar
7. Manasevit, H. M., Herdmann, F. M., Simpson, W. I., J. Electrochem. Soc. 118, 1864 (1971).Google Scholar
8. Zembutsu, S., Sasaki, T., Appl. Phys. Lett. 48, 870 (1986).Google Scholar
9. Gaskill, D. K., Bottka, N., Lin, M. C., J. Cryst. Growth 22, 418 (1986).CrossRefGoogle Scholar
10. Kouvetakis, J., Beach, D. B., Chem. Mater. 1, 476 (1989).CrossRefGoogle Scholar
11. Ho, K. L., Jensen, K. F., Hwang, J. W., Evans, J. F., Gladfelter, W. L., Mater. Res. Soc. Symp. Proc. 204, 101 (1991).Google Scholar
12. Gordon, R. G., Hoffman, D. M., Riaz, U., Mater. Res. Soc. Symp. Proc. 204, 95 (1991).Google Scholar
13. Waggoner, K. M., Olmstead, M. M., Power, P. P., Polyhedron 9, 257 (1990).Google Scholar
14. Noth, H., Konrad, P., Z. Naturforsh. B. 10, 234 (1955).Google Scholar
15. Fix, R., Gordon, R. G., Hoffman, D. M., Chem. Mater, in press.Google Scholar
16. Practical Surface Analysis, edited by Briggs, D., Seah, M.P. (John Wiley, New York, 1983), p. 498.Google Scholar
17. GaN: Index No. 2–1078. Powder Diffraction File, editor-in-chief: McClune, W. F. (JCPDS International Centre for Diffraction Data, Swarthmore, PA 19081–2389, USA).Google Scholar
18. Hovel, H. J., Cuomo, J. J., Appl. Phys. Lett. 20, 71 (1972).Google Scholar
19. Gordon, R. G., Hoffman, D. M., Riaz, U., J. Mater. Res. 6, 5 (1991).Google Scholar