Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-29T09:55:20.929Z Has data issue: false hasContentIssue false

Low Temperature OMVPE of ZnSe from Alkyl Sources Using a Plasma Disk Lamp

Published online by Cambridge University Press:  25 February 2011

K. L. Tokuda
Affiliation:
AT&T Bell Laboratories, Holmdel, NJ 07733
B. Pihlstrom
Affiliation:
Dept. of Electrical Engineering, Colorado State Univ., Ft. Collins, CO 80523
D. W. Kisker
Affiliation:
AT&T Bell Laboratories, Holmdel, NJ 07733
M. Lamont Schnoes
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
G. J. Collins
Affiliation:
Dept. of Electrical Engineering, Colorado State Univ., Ft. Collins, CO 80523
Get access

Abstract

The growth of high quality ZnSe by organometallic vapor phase epitaxy (OMVPE) has generally been hindered because of parasitic source pre-reactions or relatively high source decomposition temperatures. In this work, we have used vacuum ultraviolet photons generated by a disk-plasma lamp to assist the ZnSe growth process using diethylselenium and diethylzinc as source materials. This approach has resulted in satisfactory growth rates and high material quality at temperatures as low as 250°C, without the limitations of prereaction typically observed when H2Se is used for the selenium source material. In addition, the alkyl selenium compound offers advantages due to reduced toxicity compared to H2Se. This new, low-growth-temperature process thus offers the possibility of improved stoichiometry and impurity incorporation control as well as a reduced thermal effect on the underlying substrate during growth. At the same time, the advantages of excellent morphology and uniformity typically exhibited by the alkylbased growth processes are retained.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Stutius, W., Appl. Phys. Lett. 33 (7), 656 (1978).Google Scholar
[2] Yao, T., Ogura, M., Matsuoka, S., Morishita, T., Appl. Phys. Lett. 43 (5), 499 (1983).Google Scholar
[3] Feldman, R. D., Kisker, D. W., Austin, R. F., Jeffers, K. S., and Bridenbaugh, P. M., J. Vacuum Sci. Tech., A4 (4), 2234 (1986).Google Scholar
[4] Kisker, D. W., Fuoss, P. H., Krajewski, J. J., Amirthiraj, P. M., Nakahara, S., Menendez, J., J. Cryst. Growth, 86, 210 (1988).CrossRefGoogle Scholar
[5] Yao, T. and Maekawa, S., J. Cryst. Growth, 53, 423 (1981).CrossRefGoogle Scholar
[6] Dean, P. J., Phys. Stat. Sol., A81, 625 (1984).Google Scholar
[7] Hartmann, H., Mach, R. and Testova, N., J. Cryst. Growth, 84, 199 (1987).Google Scholar
[8] Cockayne, B., Wright, P. J., Skolnick, M. S., Pitt, A. D., Williams, J. O. and Ng, T. L., J. Cryst. Growth, 72, 17 (1985).Google Scholar
[9] Fujita, S., Sakamoto, T., Isemura, M, Fujita, S., J. Cryst. Growth, 87, 581 (1988).Google Scholar
[10] Kisker, D. W. and Tokuda, K. L., Paper E9.23, Fall Meeting of the Materials Research Society, 1988.Google Scholar
[11] Wright, P. J., Cockayne, B. and Williams, A. J., J. Cryst. Growth, 84, 552 (1987).CrossRefGoogle Scholar
[12] Sato, H., Osada, O., Matsushita, K., Hariu, T. and Shibata, Y., Vacuum, 36 (1-3), 133 (1986).Google Scholar
[13] Matsumoto, T., Yoshida, S. and Ishida, T., Jpn. J. Appl. Phys., 25 (5), L413 (1986).Google Scholar
[14] Mino, N., Kobayashi, M., Konagai, M. and Takahashi, K., J. Appl. Phys. 59 (6), 2216 (1986).Google Scholar
[15] Oda, S., Kawase, R., Sato, T., Shimizu, I. and Kokado, H., Appl. Phys. Lett., 48 (1), 33 (1986).Google Scholar
[16] Ando, H., Inuzuka, H., Konagai, M. and Takahashi, K., J. Appl. Phys, 58 (2) 802 (1985).CrossRefGoogle Scholar
[17] Johnson, W. E. and Schlie, L. A., Appl. Phys. Lett., 40 (9), 798 (1982).Google Scholar
[18] Fujita, S., Tanabe, A., Sakamoto, T., Isemura, M. and Fujita, S., Jpn. J. Appl. Phys., 26 (12) L2000 (1987).Google Scholar
[19] Rudder, R. A., Fountain, G. G. and Markunas, R. J., J. Appl. Phys. 60 (10), 3519 (1986).Google Scholar
[20] Sheng, T. Y., Yu, Z. Q. and Collins, G. J., Appl. Phys. Lett., 52 (7), 576 (1988).Google Scholar
[21] Zamani, H., Yu, Z. Q., Collins, G. J., Bhattacharya, E. and Pankove, J. I., to be published.Google Scholar