Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-18T01:17:30.194Z Has data issue: false hasContentIssue false

Low Field Magnetoresistance at Room Temperature in CrO2 Doped Polyvinyl Alcohol Films

Published online by Cambridge University Press:  23 May 2011

S. Biswas
Affiliation:
The LNM Institute of Information Technology, Jaipur-302031, India
S. Ram
Affiliation:
Materials Science Centre, Indian Institute of Technology, Kharagpur-721302, India
Get access

Abstract

Ferromagnetic CrO2 nanoparticles embedded in a diamagnetic matrix of polyvinyl alcohol (PVA) presents an example of granular giant magnetoresistance (GMR) in a diluted magnetic composite structure. Usefully significant MR occurs at room temperature, viz. -6.8% in 3.0 wt% CrO2-PVA, at field as small as 1.1 kOe. We suggest that the system is a natural analogue to dilute ferro-fluid structures composed of nanoscale magnetic particles in a viscous organic fluid (diamagnetic as well as an electrical insulator), i.e., this material displays a GMR effect without an introduction of chemical interfaces. It has great potential in various applications and can also facilitate studies of magnetotransport properties in GMR materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Coey, J. M. D., Berkowitz, A. E., Balcells, L., Putris, F. F., and Barry, A., Phys. Rev. Lett. 80, 3815 (1998).Google Scholar
2. Korotin, M. A., Anisimov, V. I., Khomskii, D. I., and Sawatzky, G. A., Phys. Rev. Lett. 80, 4305 (1998).Google Scholar
3. Dai, J., Tang, J., Xu, H., Spinu, L., Wang, W., Wang, K., Kumbhar, A., Li, M., and Diebold, U., Appl. Phys. Lett. 77, 2840 (2000).Google Scholar
4. Dai, J. and Tang, J., Phys. Rev. B 63, 054434 (2001).Google Scholar
5. Wang, L., Umemoto, K., Wentzcovitch, R. M., Chen, T. Y., Chien, C. L., Checkelsky, J. G., Eckert, J. C., Dahlberg, E. D., and Leighton, C., Phys. Rev. Lett. 94, 56602 (2005).Google Scholar
6. Nadgorny, B., Mazin, I. I., Osofsky, M., Soulen, R. J. Jr., Broussard, P., Stroud, R. M., Singh, D. J., Harris, V. G., Arsenov, A., and Mukovskii, Ya., Phys. Rev. B 63, 184433 (2001).Google Scholar
7. Parker, J. S., Ivanov, P. G., Lind, D. M., and Xiong, P., Phys. Rev. B 69, 220413 (2001).Google Scholar
8. Biswas, S. and Ram, S., Chem. Phys. 306, 163 (2004).Google Scholar
9. Manoharan, S. S., Elefant, D., Reiss, G., and Goodenough, J. B., Appl. Phys. Lett. 72, 984 (1998).Google Scholar
10. Chen, Y. J., Zhang, X. Y., and Li, Z. Y., Chem. Phys. Lett. 375, 213 (2003).Google Scholar
11. Dai, J. and Tang, J., Phys. Rev. B 63, 064410 (2001).Google Scholar
12. Shang, C. H., Nowak, J., Jansen, R., and Moodera, J. S., Phys. Rev. B 58, 2917 (1998).Google Scholar
13. Glazman, L. I. and Matveev, K. A., Sov. Phys. JETP 67, 1276 (1988).Google Scholar
14. Xu, Y., Ephron, D., and Beasley, M. R., Phys. Rev. B 52, 2843 (1995).Google Scholar