Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-09-26T02:40:27.434Z Has data issue: false hasContentIssue false

Low Energy Ion Doping Technology for Poly-Si TFTs

Published online by Cambridge University Press:  10 February 2011

A. Mimura
Affiliation:
Hitachi Research Laboratory, Hitachi Ltd. 7-1-1 Omika-cho, Hitachi-shi, Ibaraki-ken, 319-12 Japan, amimura@ hrl.hitachi.co.jp
M. Nagai
Affiliation:
Hitachi Research Laboratory, Hitachi Ltd. 7-1-1 Omika-cho, Hitachi-shi, Ibaraki-ken, 319-12 Japan, amimura@ hrl.hitachi.co.jp
Y. Shinagawa
Affiliation:
Hitachi Research Laboratory, Hitachi Ltd. 7-1-1 Omika-cho, Hitachi-shi, Ibaraki-ken, 319-12 Japan, amimura@ hrl.hitachi.co.jp
Get access

Abstract

Ion doping technology using a bucket-type ion source to fabricate low temperature poly-Si TFTs is presented. Low energy and high ion density conditions are applied to realize the short doping time and resist mask doping for large area glass substrates. A novel CMOS doping technology with one resist mask process is proposed using compensation and inversion of the shollow doped layer. In combination with excimer laser crystallization and activation below 450°C, high performance CMOS TFTs are produced.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Mimura, A., Mikami, Y., Kuwabara, K., Mori, Y., Nagai, M., Nagae, Y., and Kaneko, E, Proc. of 1994 Int. Display Res. Conf., p.126(1994)Google Scholar
[2] Kuriyama, H., Nohda, T., Aya, Y., Kuwahara, T., Wakisaka, K., Kiyama, S., and Tsuda, S., Jpn. J. Appl. Phys., 33, p.5657(1994)Google Scholar
[3] Kohono, A., Sameshima, T, Sano, N., Sekiya, M., and Hara, M., IEEE Trans. Electron Devices, 42, p.251 (1995)Google Scholar
[4] Chen, S., Sun, Y. H., Mei, P., and Byce, J. B., Proc. The 2nd Int. Display Workshop, p.15(1995)Google Scholar
[5] Hayashi, H., Kunii, M., Suzuki, N., Kanaya, Y., Kuki, M., Minegishi, M., Urazone, T., Fijino, M., Noguchi, T., and Kanagawa, , IEDM 95 Digest, p.829(1995)Google Scholar
[6] Mimura, A., Kawachi, G., Aoyama., T., Suzuki, T., Nagae, Y., Konishi, N., and Mochizuki, Y., IEEE Trans. Electron Devices, 40, p.513(1993)Google Scholar
[7] Kawachi, G., Aoyama, T., Suzuki, T., Mimura, A., Ohno, Y., Konishi, N., Mochizuki, Y., and Miyata, K., Jpn. J. Appl. Phys., p.L2370(1990)Google Scholar
[8] Ohshima, H., Hashizume, T., Matsuo, M., Inoue, S., and Nakazawa, T, Proc. of 1993 SID Int. Symp. p.387(1993)Google Scholar
[9] Mimura, A., Nagai, M., Mimkami, Y., Kuwabara, K., Mori, Y., Nagae, Y., and Kaneka, E., Proc. Int. Symp. Sputtering and Plasma Processes, p.293 (1994)Google Scholar
[10] Mimura, A., Nagai, M., Mikami, Y., Kuwabara, K., Mori, Y., Nagae, Y., and Kaneko, E., Proc. 1995 Int. Display Res. Conf., p.329(1995)Google Scholar