Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-18T21:42:56.141Z Has data issue: false hasContentIssue false

Local Atomic Structures in Amorphous and Quasicrystalline Zr70Ni10Pt20 and Zr80Pt20 Alloys by the Anomalous X-ray Scattering Method

Published online by Cambridge University Press:  17 March 2011

Eiichiro Matsubara
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
Takahiro Nakamura
Affiliation:
Department of Material Science, Graduate School, Tohoku University, Sendai, 980-8579, Japan
Masaki Sakurai
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
Muneyuki Imafuku
Affiliation:
Inoue Superliquid Glass Project, ERATO, Japan Science and Technology Corporation (JST), Sendai 982-0807, Japan
Shigeo Sato
Affiliation:
Inoue Superliquid Glass Project, ERATO, Japan Science and Technology Corporation (JST), Sendai 982-0807, Japan
Jyunji Saida
Affiliation:
Inoue Superliquid Glass Project, ERATO, Japan Science and Technology Corporation (JST), Sendai 982-0807, Japan
Akihisa Inoue
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
Get access

Abstract

Local atomic structures around Zr and Pt in a quasicrystalline Zr80Pt20 alloy, and amorphous and quasicrystalline Zr70Ni10Pt20 alloys have been determined by the anomalous x-ray scattering (AXS) method. A distinct prepeak observed in an intensity profile of the amorphous Zr70Ni10Pt20 alloy indicates existence of strong chemical short-range order (CSRO) clusters in the amorphous phase. Total coordination numbers around Zr and Pt in a nearest neighbor region in both alloys have been evaluated. The values around Pt are almost equal to 12 in the amorphous and quasicrystalline states suggest formation of icosahedral clusters around Pt. Some of crystalline structures formed from the quasicrystalline phases by annealing consist of icosahedral clusters of Zr and Ni atoms, or polyhedral clusters of Zr and Pt atoms similar with icosahedral clusters. The present result appears to support that the phase transformation from the amorphous to the crystal through the quasicrystal is explained by the icosahedral CSRO clusters in the amorphous and quasicrystalline states.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Inoue, A., Zhang, T. and Masumoto, T., Mater. Trans. JIM 31, 177 (1990).Google Scholar
2. Köster, U., Meinhardt, J., Roos, S. and Liebertz, H., Appl. Phys. Lett. 69, 179 (1996).Google Scholar
3. Xing, L.Q., Eckert, J., Loser, W. and Schultz, L., Appl. Phys. Lett. 74, 664 (1999).Google Scholar
4. Eckert, J., Mattern, N., Zinkevitch, M. and Seidel, M., Mater. Trans. JIM 39, 623 (1988).Google Scholar
5. Köster, U., Meinhardt, J., Roos, S. and Rudiger, A., Mater. Sci. Forum 225–227, 311 (1996).Google Scholar
6. Chen, M.W., Zhang, T., Inoue, A., Sakai, A. and Sakurai, T., Appl. Phys. Lett. 75, 1697 (1999).Google Scholar
7. Inoue, A., Zhang, T., Saida, J., Matsushita, M., Chen, M.W. and Sakurai, T., Mater. Trans. JIM 40, 1181 (1999).Google Scholar
8. Inoue, A., Saida, J., Matsushita, M. and Sakurai, T., Mater. Trans. JIM 41, 362 (2000).Google Scholar
9. Saida, J., Matsushita, M. and Li, C., Appl. Phys. Lett. 76, 3558 (2000).Google Scholar
10. Matsubara, E., Sakurai, M., Nakamura, T., Imafuku, M., Sato, S., Saida, J. and Inoue, A., Proc. 5th Int'l Conf. Nanostructured Materials, (Aug. 21-25, 2000, Sendai, Japan).Google Scholar
11. Saida, J., Matsushita, M. and Li, C., Appl. Phys. Lett. 77, 73 (2000).Google Scholar
12. Matsubara, E. and Waseda, Y., Resonant Anomalous X-Ray Scattering Theory and Applications, edited by Materlik, G., Sparks, C.J. and Fischer, K. (Elsevier, 1994), pp. 345364.Google Scholar
13. Matsubara, E., Sugiyama, K., Waseda, Y., Ashizuka, M. and Ishida, E., J. Mater. Sci. Lett., 9, 14 (1990).Google Scholar
14. Waseda, Y., Matsubara, E., Okuda, K., Omote, K., Tohji, K., Okuno, S.N. and Inomata, K., J. Phys.: Condens. Matter 4, 6355 (1992).Google Scholar
15. Narten, A.H. and Levy, H.A., Science, 160, 447 (1969).Google Scholar
16. Matsubara, E., Tamura, T., Waseda, Y., Inoue, A., Zhang, T. and Masumoto, T., Mater. Trans. JIM 33, 873 (1992).Google Scholar
17. Chen, H.S., Koskenmaki, D. and Chen, C.H., Phys. Rev. B 35, 3715 (1987).Google Scholar
18. Matsubara, E., Waseda, Y., Tsai, A.P., Inoue, A. and Masumoto, T., Z. Naturforsch. 43a, 505 (1988).Google Scholar
19. Matsubara, E., Waseda, Y., Tsai, A.P., Inoue, A. and Masumoto, T., J. Mater. Sci. 25, 2507 (1990).Google Scholar
20. Pearson's Handbook of Crystallographic Data for Intermetallic Phases, Vol. 3, edited by Villars, P. and Calvert, L.D. (ASM, 1991), p.3421.Google Scholar
21. Altounian, Z., Batalla, E., Strom-Olsen, J. and Walter, J., J. Appl. Phys. 61, 149 (1987).Google Scholar
22. Saida, J., Matsushita, M. and Inoue, A., J. Mater. Res. 16, 28 (2001).Google Scholar
23. Saida, J., Matsushita, M., Zhang, T., Inoue, A., Chen, M.W. and Sakurai, T., Appl. Phys. Lett. 75, 3497 (1999).Google Scholar
24. Saida, J., Matsushita, M. and Inoue, A., Mat. Trans. JIM 41, 1505 (2000).Google Scholar
25. Pearson's Handbook of Crystallographic Data for Intermetallic Phases, Vol. 4, edited by Villars, P. and Calvert, L.D. (ASM, 1991), p.5021.Google Scholar
26. Pearson's Handbook of Crystallographic Data for Intermetallic Phases, Vol. 1, edited by Villars, P. and Calvert, L.D. (ASM, 1991), p.13551356.Google Scholar