Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-09-19T10:12:15.026Z Has data issue: false hasContentIssue false

Lithium-Iodine Intercalation in The Ferroelectric Layered Compound Bi4Ti3O12-x

Published online by Cambridge University Press:  16 February 2011

T. Kijima
Affiliation:
Department of Materials Science, Faculty of Engineering, Miyazaki University, Miyazaki 889-21, Japan
S. Kimura
Affiliation:
Department of Materials Science, Faculty of Engineering, Miyazaki University, Miyazaki 889-21, Japan
Y. Kawahara
Affiliation:
Department of Materials Science, Faculty of Engineering, Miyazaki University, Miyazaki 889-21, Japan
K. Ohe
Affiliation:
Department of Materials Science, Faculty of Engineering, Miyazaki University, Miyazaki 889-21, Japan
M. Yada
Affiliation:
Department of Materials Science, Faculty of Engineering, Miyazaki University, Miyazaki 889-21, Japan
M. Machida
Affiliation:
Department of Materials Science, Faculty of Engineering, Miyazaki University, Miyazaki 889-21, Japan
Get access

Abstract

The reaction of Bi4Ti3O12-x with lithium iodide under an atmosphere of iodine at 400°C was found to afford a novel intercalation compound Lil3Bi4Ti3O11. The brownish red bismuth titanate is monoclinic with the lattice parameters of a=5.7417(2), b=5.4016(2), c=36.787(1) Å and ß=88.93(1) deg. The pathway to the new intercalation compound is proposed on the basis of X-ray, XPS, SEM and compositional observations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Xiang, X. D., Mckernan, S., Vareka, W. A., Zettl, A., Corkill, J. L, Barbee, T. W. III and Cohen, M. L., Nature 348, 145 (1990).Google Scholar
2. Xiang, X. D., Zettl, A., Vareka, W. A., Corkill, J. L, Barbee, T. W. II and Cohen, M. L., Phys. Rev. B 43, 11496 (1991).Google Scholar
3. Xiang, X. D., Vareka, W. A., Zettl, A., Corkill, J. L and Cohen, M. L., Phys. Rev. Lett. 68(1992), 530.Google Scholar
4. Scarfe, D. P., Bhavaraju, S. and Jacobson, A. J., Chem. Commun. 313 (1998)Google Scholar
5. Kumakura, H., Ye, J., Shimoyama, J., Kitaguchi, H., and Togano, K., J. J. Appl. Phys. 32, L894 (1993).Google Scholar
6. Choy, J., Park, N., Hwang, S., and Kim, Y., Synth. Metal. 71, 1551 (1995).Google Scholar
7. Muraoka, Y., Nagoshi, M., Morioka, Y., Kikuchi, M., Hiraga, K., Kobayashi, N. and , Shono, Physica C 263, 193(1996).Google Scholar
8. Choy, J., Park, N., Hwang, S., and Kim, D., J. Am. Chem. Soc. 116, 11564(1994).Google Scholar
9. Kijima, T., Sushida, H., Yada, M., and Machida, M., J. Solid State Chem. in press.Google Scholar
10. Dorrian, J. F., Newnham, R. E., Smith, D. K., Kay, M. I., Ferroelectrics 3, 17 (1971).Google Scholar
11. Aurivillius, B., Arkiv Kemi,1,463 (1949);1,499 (1949);2, 519 (1950).Google Scholar