Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-28T21:02:26.345Z Has data issue: false hasContentIssue false

Linear and Nonlinear Optical Properties of Metal Nanocluster-Silica Composites Formed by Sequential Implantation of Ag And Cu

Published online by Cambridge University Press:  21 February 2011

R.A. Zuhr
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
R.H. Magruder.III
Affiliation:
Vanderbilt University, Nashville, TN 37235
T.A. Anderson
Affiliation:
Vanderbilt University, Nashville, TN 37235
D.O. Osborne JR.
Affiliation:
Vanderbilt University, Nashville, TN 37235
Get access

Abstract

Metal nanocluster-glass composites demonstrate unique optical properties and significant nonlinear response. In this work nanometer dimension metal colloids were formed in silica by sequential implantation of Ag and Cu ions. The Ag and Cu were implanted with relative ratios of Ag to Cu of 9:3,6:6, and 3:9 at a total nominal dose of 12xl016 ions/cm2. TEM techniques were used to examine colloid size and size distributions. The linear optical response was measured from 200 to 900 nm, while the nonlinear optical properties were measured using the z-scan technique at a wavelength of 570 nm. The linear and nonlinear optical properties were found to be dependent upon the ratio of sequentially implanted Ag to Cu and are consistent with effective medium theory.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Flytzanis, C., Hache, F., Klein, M.C., Ricard, D. and Roussignol, Ph., Progress in Optics, 29, 321 (1991) and references there in.Google Scholar
2 Haus, J.W., Kalyaniwalla, N., Inguva, R., Bloemer, M. and Bowden, C. M., J. Opt. Soc. Am. B6, 787 (1989).Google Scholar
3 Magruder,III, R.H., Haglund, R.F., Yang, L., White, C.W., Yang, Lina, Dorsinville, R. and Alfano, R.R.. J.Appl. Phys. Lett. 62, 465 (1993).Google Scholar
4 Bohren, C.F. and Huffman, D.R., Absorption and Scattering of Light by Small Particles, (John Wiley and Sons, New York, 1983).Google Scholar
5 Kreibig, U. and Genzel, L., Surf. Sei. 156, 678 (1985).Google Scholar
6 Weber, M.J., Milam, D. and Smith, W.L., Optical Eng., 17, 463 (1978).Google Scholar
7 Magruder,III, R. H., Wittig, J.E. and Zuhr, R.A., J. Non Cryst. Solids, 163, 162 (1993).Google Scholar
8 Zuhr, R.A., Magruder.III, R.H. and Wittig, J.E., Mat. Res. Soc. Sym. Proa, 316, 457 (1994).Google Scholar
9 Magruder,III, R.H., Zuhr, R.A. and Osbome, D. O. accepted to Nucl. Instr. and Meth. B.Google Scholar
10 Magruder.III, R.H., Kinser, D.L., Wittig, J.E. and Zuhr, R.A., SPIE Proceedings: Properties and Characteristics of Glass III, 1761 180 (1992).Google Scholar
11 Magruder,III, R.H., Haglund, R. F., Yang, L., Wittig, J.E. and Zuhr, R.A., J. Appl. Phys., 76, 715 (1994).Google Scholar
12 Magruder,III, R.H., Osborne, D.O. and Zuhr, R.A., Non Cryst, J.. Solids, in press.Google Scholar
13 Biersack, J.P. and Haggmark, L.G., Nucl. Inst. Methods B 174, 257 (1980).Google Scholar
14 Sheik-Bahae, M., Said, A.A., Wei, T., Hagan, D.J. and Van Stryland, E.W., IEEE J. Quantum Electronics, 26, 760 (1990).Google Scholar
15 Van Stryland, E.W., Sheik-Bahae, M., Said, A.A., Wei, T., and Hagan, DJ., SPIE 1852, 135 (1993).Google Scholar
16 Hummel, R. E., Electronic Properties of Materials, 2nd Ed., (Springer - Verlag, Berlin 1993).Google Scholar