Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-18T01:57:57.994Z Has data issue: false hasContentIssue false

Lateral Solid Phase Crystallization of Amorphous Silicon Under High Pressure

Published online by Cambridge University Press:  15 February 2011

Seung-Mahn Lee
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611-6400
Rajiv K. Singh
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611-6400
Get access

Abstract

We have investigated a novel surface-seeded crystallization technique at low processing temperatures (≤ 550°C) and high pressures (10MPa~25MPa) using polished polycrystalline diamond seeds. By controlling the high pressure, the nucleation and growth of silicon can be controlled to obtain improved quality silicon films on amorphous substrates at low temperatures. Depending on the annealing temperature and applied pressure, the orientation of crystallized silicon thin films varies as seen by x-ray diffraction and transmission electron microscopy results. In addition, crystallization of amorphous silicon thin films has effect on their roughness.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Einspruch, N. G., and Gildenblat, G., Advanced MOS device physics, Academic Press, San Diego (1991)Google Scholar
2. Ishiwara, H., Wakabayashi, H., Miyazaki, K., Fukao, K., and Sawaoka, A., Jpn. J. Appl. Phys. 32, 308 (1993)Google Scholar
3. Omara, W.C., “Liquid Crystal Displays” in Manufacturing Science and Technology, Van Nostrand and Reinhold, NY (1993)Google Scholar
4. Fortunato, G., Thin Solid Films 296, 82 (1997)Google Scholar
5. Panwar, O. S., Moore, R. A., Raza, S. H., Gamble, H.C., and Armstrong, B. M., Thin Solid Film 237, 255 (1994) 222 Google Scholar
6. Holland, O. W., Zou, D. S., and Thomas, D. K., Appl. Phys. Lett. 63,896 (1993)Google Scholar
7. Maszara, W. P., Goetz, G., Caviglia, A., and McKitterick, J. B., J. Appl. Phys. 64(10), 4943 (1988)Google Scholar
8. Benitez, A., Esteve, J., and Bausells, J., Sensors and Actuators A 50, 99 (1995)Google Scholar
9. Brotherton, S.D., McCulloch, D.J., Clegg, J.B., Gowers, J.P., IEEE Trans. Elect. Devs. 40, 407 (1993)Google Scholar
10. Singh, R. K., Jung, S.-M., Lee, S.-M., and Hummel, R. E., J. Electrochem. Soc. 145(11), 3963 (1998)Google Scholar
11. Lu, G.-Q., Nygren, E., and Aziz, M. J., J. Appl. Phys. 70,5323 (1991)Google Scholar
12. Sakai, A., Ono, H., Ishida, K., Niino, T., and Tatsumi, T., Jpn. Appl. Phys. Lett. 30, L941 (1991)Google Scholar
13. Lee, E. G. and Rha, S. K., J. Mat. Sci. 28, 6279 (1993)10.1007/BF01352184Google Scholar