Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-25T22:53:41.106Z Has data issue: false hasContentIssue false

Laser Writing of Nanostructures on Magnetic Film Surfaces With Optical Near Field Effects

Published online by Cambridge University Press:  17 March 2011

S. M. Huang
Affiliation:
Data Storage Institute and Department of Electrical & Computer Engineering, Laser Microprocessing Laboratory, National University of Singapore, 10 Kent Ridge Crescent, Singapore117608
M. H. Hong
Affiliation:
Data Storage Institute and Department of Electrical & Computer Engineering, Laser Microprocessing Laboratory, National University of Singapore, 10 Kent Ridge Crescent, Singapore117608
B. S. Luk'yanchuk
Affiliation:
Data Storage Institute and Department of Electrical & Computer Engineering, Laser Microprocessing Laboratory, National University of Singapore, 10 Kent Ridge Crescent, Singapore117608
W. D. Song
Affiliation:
Data Storage Institute and Department of Electrical & Computer Engineering, Laser Microprocessing Laboratory, National University of Singapore, 10 Kent Ridge Crescent, Singapore117608
Y. F. Lu
Affiliation:
Data Storage Institute and Department of Electrical & Computer Engineering, Laser Microprocessing Laboratory, National University of Singapore, 10 Kent Ridge Crescent, Singapore117608
T.C. Chong
Affiliation:
Data Storage Institute and Department of Electrical & Computer Engineering, Laser Microprocessing Laboratory, National University of Singapore, 10 Kent Ridge Crescent, Singapore117608
Get access

Abstract

Laser directly writing of nanostrucrures on magnetic film surfaces with optical near field effects has been investigated. Spherical 0.99 m or 0.47 m silica particles were placed on Cr/CoCrPt multilayers. After laser illumination with an excimer laser for a single shot, pits were obtained at the original position of the particles using different laser fluences or particle size parameters. The mechanism of the formation of nanostructure pattern was discussed and found to be the near-field optical resonance effect induced by particles on the surface. A comparison with accurate theoretical calculations of near-field light intensity distribution showed good agreement with the experiment results. The method of particle enhanced laser irradiation allows the study of field enhancement effects as well as its potential applications for nanolithography.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gorbunov, A. A. and Pompe, W., Phys. Sta. Sol. 145, 333 (1994).Google Scholar
2. Jersch, J. and Dickmann, K., Appl. Phys. Lett. 68, 868 (1996).Google Scholar
3. Lu, Y. F., Mai, Z. H., Qiu, G., and Chim, W. K., Appl. Phys. Lett. 75, 2359 (1999).Google Scholar
4. lu, Y. F., Mai, Z. H., Zheng, Y. W., and Song, W. D., Appl. Phys. Lett. 76, 1200 (2000).Google Scholar
5. Jersch, J., Demming, F., Dickmann, K., Appl. Phys. A 64, 29 (1997).Google Scholar
6. Jersch, J., Demming, F., Hildenhagen, L. J., Dickmann, K., Appl. Phys. A 66, 29 (1998).Google Scholar
7. Mamin, H. J., Guethner, P. H., and Rugar, D., Phys. Rev. Lett. 65, 2418 (1990).Google Scholar
8. Halfpenny, D. R. and Kane, D. M., J. Appl. Phys. 87, 6641 (1999).Google Scholar
9. Kane, D. M. and Halfpenny, D. R., J. Appl. Phys. 87, 4548 (2000).Google Scholar
10. Mosbacher, M., Münzer, H.-J., Zimmermman, J., Solis, J., Boneberg, J., Leiderer, P., Appl. Phys. A 72, 41 (2001).Google Scholar
11. Lu, Y. F., Zhang, L., Song, W. D., Zheng, Y. W., and Luk'yanchuk, B. S., JETP lett. 72, 457 (2000).Google Scholar
12. Hayashi, S., Kamamoto, Y., Sutuki, T., Hirai, T., J. Colloid Interface Sci. 144, 538 (1991).Google Scholar
13. Mosbacher, M., Chaoui, N., Siegel, J., Dobler, V., Solis, J., Boneberg, J., Afonso, C. N., and Leiderer, P.: Applied. Phys. A 69, S331 (1999).Google Scholar
14. Burmeister, F., Schäfle, C., Keilhofer, B., Bechinger, C., Boneberg, J., and Leiderer, P.: Adv. Mater. (10, 495 (1998).Google Scholar
15. Luk'yanchuk, B. S., Zheng, Y. W., and Lu, Y. F., Proc. SPIE 4065, 576 (2000).Google Scholar
16. Leiderer, P., Boneberg, J., Dobler, V., Mosbacher, M., Münzer, H.-J., Chaoui, N., Siegel, J., Solis, J., Afonso, C. N., Fourrier, T., Schrems, G., and Bäuerle, D., Proc. SPIE 4065, 249 (2000).Google Scholar
17. Chylek, P., Kiehl, J. T., and Ko, M. K., Phys. Rev. 18, 2229 (1978).Google Scholar
18. Ashkin, A. and Dziedzic, J. M., Appl. Opt. 20, 1803 (1981).Google Scholar