Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T04:34:39.040Z Has data issue: false hasContentIssue false

Laser Interference Structuring of a-GeN for the Production of Optical Diffraction Gratings

Published online by Cambridge University Press:  01 February 2011

M. Mulato
Affiliation:
Departamento de Física e Matemática, Faculdade de Filosofia Ciências e Letras de Ribeirāo Preto, Universidade de Sāo Paulo, Av. Bandeirantes 3900, Ribeirāo Preto, SP, Brazil
A. R. Zanatta
Affiliation:
Instituto de Física de Sāo Carlos, Universidade de Sāo Paulo, Sāo Carlos, SP, Brazil
D. Toet
Affiliation:
FlexICs Inc.,165 Topaz Street, Milpitas, CA, 95035, USA
I. E. Chambouleyron
Affiliation:
Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas - Unicamp, Campinas, SP, Brazil
Get access

Abstract

In this work, we study the pulsed laser crystallization of hydrogen-free amorphous germanium-nitrogen alloys (a-GeN). We discuss the role of nitrogen during phase transitions and the possible application of the resulting structure as an optical diffraction grating. The crystallized region results of pure microcrystalline germanium (μc-Ge). An indication that Ge-N bonds have broken and nitrogen outdiffused of the film is obtained from infrared spectroscopy and confirmed by Raman spectra. A pattern of alternating a-GeN and μc-Ge lines with a period of about 4 μm acts as an optical diffraction grating due to the difference in optical properties between the two materials, and the three dimensional surface profile, caused by N2 effusion, that is formed on the sample.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Lin, C. W., Tseng, C. H., Chang, T. K., Lin, C. W., Wang, W. T., Cheng, H. C., IEEE Electron Device Letters 23, 133 (2002).Google Scholar
[2] Hatanaka, Y., Niraula, M., Nakamura, A. and Aoki, T., Applied Surface Science 175, 462 (2001).Google Scholar
[3] Toet, D., Smith, P. M., Sigmon, T. W., Thompson, M. O., Applied Physics Letters 77, 307 (2000).Google Scholar
[4] Lu, J. P., Mei, P., Fulks, R. T., Rahn, J., Ho, J., Wang, Y., Boyce, J. B. and Street, R. A., Journal of Vaccum Science and Technology A- Vacuum Surfaces and Films 18, 1823 (2000).Google Scholar
[5] Sposili, R. S. and Im, J. S., Applied Physics A- Materials Science and Processing 67, 273 (1998).Google Scholar
[6] Im, J. S., Sposili, R. S. and Crowder, M. A., Applied Physics Letters 70, 3434 (1997).Google Scholar
[7] Sposili, R. S. and Im, J. S., Applied Physics Letters 69, 2864 (1996).Google Scholar
[8] Sameshima, T., Applied Surface Science 96-8, 352 (1996).Google Scholar
[9] Gosain, D. P., Machida, A., Usui, S. and Arai, M., Polycrystalline Semiconductors IV Materials, Technologies and Large Area Electronics 80-81, 169 (2001).Google Scholar
[10] Gosain, D. P., Noguchi, T. and Usui, S., Japanese Journal of Applied Physics Part 2 - Letters 39, L179 (2000).Google Scholar
[11] Carey, P. G., Smith, P. M., Theiss, S.D. and Wickboldt, P., Journal of Vacuum Science and Technology A - Vacuum Surfaces and Films 17, 1946 (1999).Google Scholar
[12] Mulato, M., Toet, D., Aichmayr, G., Santos, P.V., and Chambouleyron, I., Appl. Phys. Lett. 70, 3570 (1997).Google Scholar
[13] Aichmayr, G., Toet, D., Mulato, M., Santos, P.V., Spangenberg, A., Christiansen, S., Albrecht, M., and Strunk, H.P., phys. stat. sol. (a) 166, 659 (1998).Google Scholar
[14] Aichmayr, G., Toet, D., Mulato, M., Santos, P.V., Spangenberg, A., and Bergman, R. B., J. of NonCryst. Solids 227-230, 921 (1998).Google Scholar
[15] Mulato, M., Toet, D., Aichmayr, G., Spangenberg, A., Santos, P.V., and Chambouleyron, I., J. of NonCryst. Solids 227-230, 930 (1998).Google Scholar
[16] Aichmayr, G., Toet, D., Mulato, M., Santos, P.V., Spangenberg, A., Christiansen, S. and Albrecht, M., J. Appl. Phys. 85, 4010 (1999).Google Scholar
[17] Gupta, V. V., Song, H. J. and Im, J. S., Applied Physics Letters 71, 99 (1997).Google Scholar
[18] Heintze, M., Santos, P.V., Nebel, C.E. and Stutzmann, M., Appl Phys. Lett. 64, 3148 (1994).Google Scholar
[19] Mulato, M., Toet, D., Aichmayr, G., Santos, P.V. and Chambouleyron, I., J. Appl. Phys. 82, 5159 (1997).Google Scholar
[20] Zanatta, A. R. and Chambouleyron, I., Phys. Rev. B 48, 4560 (1993).Google Scholar
[21] Swanepoel, R., J. Phys. E: Sci Instrum 16, 1214 (1983).Google Scholar
[22] Marques, F.C., Chambouleyron, I. and Evangelisti, F., J. of Non-Cryst. Solids 114, 561 (1989).Google Scholar
[23] Guanchua, C. and Fangqing, Z., This Solid Films 185, 231 (1990).Google Scholar
[24] Marques, F.C., Lacerda, R.G., Lima, M.M. Jr and Vilcarromero, J., phys. stat. sol(b) 192, 549 (1995).Google Scholar
[25] Zanatta, A. R., Chambouleyron, I. and Santos, P.V., J. Appl. Phys. 79, 1 (1996).Google Scholar