Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T22:20:57.595Z Has data issue: false hasContentIssue false

Laser Chemical Etching of Conducting and Semiconducting Materials

Published online by Cambridge University Press:  15 February 2011

T. J. Chuang*
Affiliation:
IBM Research Laboratory, 5600 Cottle Road, San Jose, California, USA
Get access

Abstract

The purpose of the paper is to examine the basic processes involved in the laser-enhanced chemical etching of solids. Specifically, the process of chemisorption, the reaction between the adsorbate and substrate atoms and the vaporization of product species affected by the laser radiation are discussed. It is shown that the laser method can provide important insight into the gas-surface reaction mechanisms. In addition, a number of examples are given to demonstrate the potential of the technique for applications to material processing. Some current studies on the laser-induced chemical etching of materials relevant to microelectronics are reviewed. Certain practical experimental approaches are also considered.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Holland, L., J. Vac. Sci. Technol. 14, 5 (1977).Google Scholar
2.(a) Coburn, J. W. and Winters, H. F., J. Vac. Sci. Technol. 16, 391 (1979);Google Scholar
2a Coburn, J. W. and Winters, H. F., J. Appl. Phys. 50, 3189 (1979)Google Scholar
2b. Gerlach-Meyer, U., Coburn, J. W. and Kay, E., Surf. Sci. 103, 177 (1981).Google Scholar
3. Tu, Y. Y., Chuang, T. J. and Winters, H. F., Phys. Rev. B23, 823 (1981).Google Scholar
4. Ehrlich, D. J., Osgood, R. M. Jr. and Deutsch, T. F., IEEE J. Quantum Electron. QE–16, 1233 (1980).CrossRefGoogle Scholar
5. Chuang, T. J., J. Vac. Sci. Technol. 21, 798 (1982).CrossRefGoogle Scholar
6. Chuang, T. J., J. Chem. Phys. 72, 6303 (1980).Google Scholar
7. Ehrlich, D. J., Osgood, R. M. Jr. and Deutsch, T. F., Appl. Phys. Lett. 36, 698 (1980).Google Scholar
8. Steinfeld, J. I., Anderson, T. G., Reiser, C., Denison, D. R., Hartsough, L. D. and Hollahan, J. R., J. Electrochem. Soc. 127, 514 (1980).Google Scholar
9. von Gutfeld, R. J., Tynam, E. E., Melcher, R. L. and Blum, S. E., Appl. Phys. Lett. 35, 651 (1979).Google Scholar
10. R.von Gutfeld, J. and Puippe, J.-CI., Oberflache-Surface 22, 294 (1981).Google Scholar
11. Osgood, R. M. Jr., Sanchez-Rubio, A., Ehrlich, D. J. and Daneu, V., Appl. Phys. Lett. 40, 391 (1982).Google Scholar
12. Winters, H. F., Coburn, J. W. and Chuang, T. J., J. Vac. Sci. Technol. (in press).Google Scholar
13. Flamm, D. L., Donnelly, V. M. and Mucha, J. A., J. Appl. Phys. 52, 3633 (1981).Google Scholar
14. Mucha, J. A., Donnelly, V. M., Flamm, D. L. and Webb, L. M., J. Phys. Chem. 85, 3529 (1981).Google Scholar
15. Chuang, T. J., IBM J. Res. Develop. 26, 145 (1982).Google Scholar
16. Mogab, C. J. and Levinstein, H. J., J. Vac. Sci. Technol. 17, 721 (1980).Google Scholar
17. Chuang, T. J., J. Chem. Phys. 74, 1453 (1981).Google Scholar
18. Chuang, T. J., J. Vac. Sci. Technol. 18, 638 (1981).Google Scholar
19. Cottrell, T. L., The Strengths of Chemical Bonds (Butterworths, London, 1958), 2nd edition, p. 252.Google Scholar
20. Rai-Choudbury, P., J. Electrochem. Soc. 118, 266 (1971).Google Scholar
21. Stinson, L. J., Howard, J. A. and Neville, R. C., J. Electrochem. Soc. 123, 551 (1976).CrossRefGoogle Scholar
22. Chuang, T. J., J. Appl. Phys. 51, 2614 (1980).Google Scholar
23. Ambartsumyan, R. V. and Letokhov, V. S., in Chemical and Biochemical Applications of Lasers, ed. Moore, C. B. (Academic, New York, 1977), Vol. 3, p. 167.Google Scholar
24. Bloembergen, N. and Yablonovitch, E., Physics Today 31(5), 23 (1978);Google Scholar
1. Schulz, P. A., Sudbo, Aa. S., Krajnovich, D. J., Kwok, H. S., Shen, Y. R. and Lee, Y. T., Ann. Rev. Phys. Chem. 30, 379 (1979).Google Scholar
25. Wagner, J. J. and Brandt, W. W., in Proceedings of the 4th International Symposium on Plasma Chemistry, ed. by Veprek, S. and Hertz, J. (University of Zurich, Switzerland, 1979), Vol. 1, p. 120.Google Scholar
26. Chuang, T. J., in Proceedings of the 3rd International Conference on Vibrations at Surfaces (Asilomar, California, September 1–4, 1982), ed. by Brundle, C. R. (Elsevier, Amsterdam);Google Scholar
26a. also to be published in Electr, J.. Spectr. Relat. Phenom.Google Scholar
27. Donnelly, V. M. and Flamm, D. L., J. Appl. Phys. 51, 5273 (1980).Google Scholar
28. von Allmen, M., in Laser and Electron Beam Processing of Materials, ed. by White, C. W. and Pearcy, P. S. (Academic, New York, 1980), p. 6; also,CrossRefGoogle Scholar
28a. Brown, W. L., in the same book, p. 20.Google Scholar
29. Schafer, S. A. and Lyon, S. A., J. Vac. Sci. Technol. 21, 422 (1982);CrossRefGoogle Scholar
29a Schafer, S. A. and Lyon, S. A., J. Vac. Sci. Technol. 19, 494 (1981).Google Scholar
30. Petro, W. G., Hino, I., Eglash, S., Lindau, I., Su, C. Y. and Spicer, W. E., J. Vac. Sci. Technol. 21, 405 (1982).CrossRefGoogle Scholar
31. Chuang, T. J., J. Chem. Phys. 74, 1461 (1981).CrossRefGoogle Scholar
32. Houle, F. A., to be published.Google Scholar
33. Lax, M., J. Appl. Phys. 48, 3919 (1977).Google Scholar
34. Mazumder, J. and Steen, W. M., J. Appl. Phys. 51, 941 (1980).Google Scholar
35. Houle, F. A. and Chuang, T. J., to be published.Google Scholar
36. Ehrlich, D. J., Osgood, R. M. Jr. and Deutsch, T. F., Appl. Phys. Lett. 38, 1018 (1981).Google Scholar
37. Houle, F. A. and Chuang, T. J., to be published.Google Scholar
38. Chuang, T. J., cited in Ref. 5.Google Scholar
39. Chen, M. and Marrello, V., J. Vac. Sci. Technol. 18, 75 (1981).Google Scholar
40. Ready, J. F., Effects of High–Power Laser Radiation (Academic, New York, 1971).Google Scholar
41. Herzberg, G., Spectra of Diatomic Molecules (Van Nostrand, D., Princeton, New Jersey, 1950), 2nd edition.Google Scholar
42. Daree, K. and Kaiser, W., Glass Technol. 18, 19 (1977).Google Scholar
43. Sveshnikova, L. L., Donin, V. I. and Repinskii, S. M., Soy. Tech. Phys. Lett. 3, 223 (1977).Google Scholar
44. Winters, H. F. and Coburn, J. W., Appl. Phys. Lett. 34, 70 (1979).Google Scholar
45. Seel, M. and Bagus, P. S., cited by Bagus, P. S., Liu, B., McLean, A. D. and Yoshimine, M., in Computational Methods in Chemistry, ed. by Bargon, J. (Plenum, New York, 1980), p. 229.Google Scholar
46. Harradine, D., McFeely, F. R., Roop, B., Steinfeld, J. I., Denison, D., Hartsough, L. and Hollahan, J. R., SPIE, Vol. 270 High Power Lasers and Applications (1981), p. 52.Google Scholar
47. Chuang, T. J., to be published.Google Scholar
48. Kawamura, Y., Toyoda, K. and Namba, S., Appl. Phys. Lett. 40, 374 (1982).Google Scholar
49. Srinivason, R., Polymers (to be published).Google Scholar
50. Srinivason, R. and Mayne-Banton, V., Appl. Phys. Lett. (to be published).Google Scholar
51. Srinivason, R., private communication.Google Scholar
52. Beterov, I. M., Chebotaev, V. P., Yurshina, N. I. and Yurshin, B. Ya., Sov. J. Quantum Electron. 8, 1310 (1978).Google Scholar
53. Solomon, R. and Mueller, L. F. Jr., U.S. Patent 3,364,087 (1968).Google Scholar