Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-25T01:12:37.851Z Has data issue: false hasContentIssue false

Laser and Thermal Annealing of Co-Implanted Si Studied by Mossbauer Spectroscopy

Published online by Cambridge University Press:  15 February 2011

G. Langouche
Affiliation:
Instituut voor Kern- en Stralingsfysika, Leuven University, Belgium
M. de Potter
Affiliation:
Instituut voor Kern- en Stralingsfysika, Leuven University, Belgium
M. Van Rossum
Affiliation:
Instituut voor Kern- en Stralingsfysika, Leuven University, Belgium
J. de Bruyn
Affiliation:
Instituut voor Kern- en Stralingsfysika, Leuven University, Belgium
I. Dezsi
Affiliation:
Instituut voor Kern- en Stralingsfysika, Leuven University, Belgium +on leave from Central Research Institute for Physics, Budapest, Hungary
R. Coussement
Affiliation:
Instituut voor Kern- en Stralingsfysika, Leuven University, Belgium
Get access

Abstract

Mössbauer spectroscopy was used to study the lattice location of Fe in Si. Strikingly different spectra were recorded depending on the implantation dose and implantation temperature. Drastic changes were also observed in the spectra upon thermal treatment or laser irradiation of the samples. Implantation profiles of several of these sources were also measured. Laser irradiation and thermal annealing above 400° C results in surface segregation of the implanted 57 Co activity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Collins, C.B., Carlson, R.O., Phys. Rev. 108, 1409 (1957).Google Scholar
2. Coster, M. de, Pollak, H., Amelincks, S. in Proceedings of the second international conference on the Mössbauer effect (Sacaly 1961), Compton, D.M.J., Schoen, A.H. Eds. (J. Wiley and Sons, New York 1962) p. 289.Google Scholar
3. Norem, P.C., Wertheim, G.K., J. Phys. Chem. Solids 23, 1111 (1962).Google Scholar
4. Milness, A.G., Deep impurities in semiconductors (J. Wiley and Sons, New York 1973).Google Scholar
5. Bergholz, W., W. Schröter, Phys. Stat. Sol. a 49, 489 (1978).CrossRefGoogle Scholar
6. Latshaw, G., Ph. D. Thesis, Stanford University (1971).Google Scholar
7. Sawicka, B., Sawicki, J., Stanek, J., J. de Physique 37, C6893 (1976).Google Scholar
8. Weyer, G., Grebe, G., Kettschau, A., Deutsch, B.I., Nylandstedt Larsen, A., Holck, O., J. de Physique 37, C6893 (1976).Google Scholar
9. Langouche, G., Dézsi, I., bruyn, J. De, Van Rossum, M., Coussement, R., J. de Physique 40, C2547 (1979).Google Scholar
10. Langouche, G., Dézsi, I., Van Rossum, M., De bruyn, J., Coussement, R., Phys. Stat. Sol. b 93, KI07 (1979).CrossRefGoogle Scholar
11. Sawicka, B.D., Sawicki, J.A., Phys. Lett. A64, 311 (1977).Google Scholar
12. Langouche, G., Dézsi, I., Van Rossum, M., bruyn, J. De, Coussement, R., Phys. Stat. Sol. b 89, K17 (1978).Google Scholar
13. Howe, L.W., Rainville, M.H., Haugen, H.K., Thompson, D.A., Nucl. Instr. Meth. 170, 419 (1980).Google Scholar
14. Potter, M. de, Langouche, G., bruyn, J. De, Rossum, M. Van, Coussement, R., Dézsi, I., Hyp. Int. (to be published).Google Scholar
15. White, C.W., Wilson, S.R., Appleton, B.R., Narayan, J. in Laser and electronbeam processing of materials, White, C.W., Peercy, P.S. Eds. (Academic Press, New York 1980) p. 124.Google Scholar
16. Dézsi, I., Coussement, R., Langouche, G., Molnar, B., Nagy, D.L., Potter, M. de, J. de Physique 41, C1425 (1980).Google Scholar