Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T09:14:06.022Z Has data issue: false hasContentIssue false

Large-area porous alumina photonic crystals via imprint method

Published online by Cambridge University Press:  01 February 2011

J. Choi
Affiliation:
Max-Planck-Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
J. Schilling
Affiliation:
Max-Planck-Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
K. Nielsch
Affiliation:
Max-Planck-Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
R. Hillebrand
Affiliation:
Max-Planck-Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
M. Reiche
Affiliation:
Max-Planck-Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
R. B. Wehrspohn
Affiliation:
Max-Planck-Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
U. Gösele
Affiliation:
Max-Planck-Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
Get access

Abstract

A perfect 2D porous alumina photonic crystal with 500 nm interpore distance was fabricated on an area of 4 cm2 via imprint methods and subsequent electrochemical anodization. A 4” imprint stamp consisting of a convex pyramid array was obtained by modern VLSI processing using DUV-lithography, anisotropic etching, LPCVD Si3N4 deposition and wafer bonding. The optical properties of the porous alumina photonic crystal were measured with an infrared microscope in Г-M direction. For both polarizations, a bandgap is observed at around 1 μm for r/a = 0.42. A reflectivity of almost unity for E-polarization in the region of the bandgap is a sign of the high quality of the structure, indicating almost no scattering losses. These experimental results could be correlated very well to the bandstructure as well as reflectivity calculations assuming a dielectric constant of å = 2.0 for the anodized alumina.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Joannopoulos, J. D., Meade, R. D. and Winn, J. N., Photonic Crystals (Princeton, NJ: Princeton University Press 1995).Google Scholar
[2] Wijnhoven, JEGJ, Vos, W.L., Science 281, 802 (1998).Google Scholar
[3] Campbell, M., Sharp, D. N., Harrison, M.T., Denning, R. G., Turberfield, A. J., Nature 404, 53(2000).Google Scholar
[4] Sato, T., Miura, K., Ishino, N., Ohtera, Y., Tamamura, T., Kawakami, S. S, Opt. Quant. Electron. 34, 63(2002).Google Scholar
[5] Masuda, H., Ohya, M., Asoh, H., Nakao, M., Nohtomi, M., and Tamamura, T., Jpn. J. Appl. Phys. 38, L1403 (1999).Google Scholar
[6] Masuda, H., Ohya, M., Nishio, K., Asoh, H., Nakao, M., Nohtomi, M., Yokoo, A. and Tamamura, T., Jpn. J. Appl. Phys. 39, L1039 (2000).Google Scholar
[7] Mikulskas, I., Juodkazis, S., Tomaŝiunas, R., and Dumas, J. G., Adv. Mater. 13, 1574 (2001).Google Scholar
[8] Pang, S., Tamamura, T., Nakao, M., Ozawa, A., and Masuda, H., J. Vac. Sci. Technol. B 16, 1145 (1998).Google Scholar
[9] Li, A.-P., Müller, F., and Gösele, U., Electrochem. Solid-State Lett. 3, 131 (2000).Google Scholar
[10] Asoh, H., Nishio, K., Nakao, M., Tamamura, T., Masuda, H., J. Electrochem. Soc. 148, B152 (2001).Google Scholar
[11] Wehrspohn, R.B., Li, A.P., Nielsch, K., F. Müller, Erfurth, W. and Gösele, U., in Oxide Films, Hebert, K.R., Lillard, R.S., Dougall, B.R. Mac eds., PV-2000-4, Electrochemical Society, Pennington, 271, (2000).Google Scholar
[12] Asoh, Masuda H. Watanabe, H. Nishio, M. Nakao, K. Tamamura, M. T. Adv. Mater. 13, 189 (2001).Google Scholar
[13] Translight package, Reynolds, A.L., University of Glasgow (http://userweb.elec.gla.ac.uk/a/areynolds/)Google Scholar