Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T10:40:01.161Z Has data issue: false hasContentIssue false

KrF Laser-Induced Chemical Vapor Deposition of Diamond

Published online by Cambridge University Press:  26 February 2011

George W. Tyndall
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California 95120-6099
Nigel P. Hacker
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California 95120-6099
Get access

Abstract

A KrF* (248 nm) laser-based process for the deposition of carbon films containing a large fraction of diamond is reported. The experiment consists of focusing the pulsed laser beam at normal incidence onto the surface of a low temperature (20° - 150° C) silicon substrate in the presence of acetic or malonic acid vapor. The process does not require the presence of hydrogen, although an inert buffer gas, e. g. argon, is usually employed. Deposition rates of approximately 1 μm - hour−1 are obtained, and the presence of diamond in the deposited film is inferred from Raman Spectroscopy and Auger Electron Spectroscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Angus, J. C. and Hayman, C.C., Science, 241, 913 (1988).Google Scholar
2. Kitihama, K., Hirata, K., Nakamatsu, H., Kawai, S., Fujimori, N., lmai, T., Yoshimo, H and Doi, A., Appl. Phys. Left., 49, 634 (1986); K. Kitihama, K. Hirata, H. Nakamatsu, S. Kawai, N. Fujimori, and T. Imai, Mater. Res. Soc. Symp. Proc., 75, 309 (1987).Google Scholar
3. Kitihama, K., Appl. Phys. Lett., 53, 1812 (1989).Google Scholar
4. Robertson, J. L., Moss, S. C., Lifshitz, Y., Kasi, S. R., Rabalais, J. W., Lempert, G. D. and Rapoport, E., Science, 243, 1047 (1989).Google Scholar
5. Spitsyn, B. V., Bouilov, L. L. and Derjaguin, B. V., J. Cryst. Growth, 52, 219 (1981); T. Mori and Y. Namba, J. Appl. Phys., 55, 3276 (1984).Google Scholar
6. Solin, S. A. and Ramdas, A. K., Phys. Rev. B, 1, 1687 (1970).Google Scholar
7. Tuinstra, F. and Koenig, J. L., J. Chem. Phys., 53, 1126 (1970).Google Scholar
8. Plano, L. S. and Adar, F., SPIE, 822, 52 (1987).Google Scholar
9. Lurie, P. G. and Wilson, J. M., Surf. Sci, 65, 476 (1977).Google Scholar
10. Craig, S., Harding, G. L. and Payling, R., Surf. Sci, 124, 591 (1983).Google Scholar