Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-24T10:01:37.183Z Has data issue: false hasContentIssue false

Kinetics Of The Growth Of Copper Clusters On The Alumina (0001) Surface : Influence Of Surface Structure

Published online by Cambridge University Press:  10 February 2011

M. Gautier-Soyek
Affiliation:
CEA, DSM / DRECAM / SRSIM, CEA / SACLAY, 91191 - Gif sur Yvette Cedex, mgautiersoyer@cea.Fr
S. Gota
Affiliation:
CEA, DSM / DRECAM / SRSIM, CEA / SACLAY, 91191 - Gif sur Yvette Cedex
L. Douillard
Affiliation:
CEA, DSM / DRECAM / SRSIM, CEA / SACLAY, 91191 - Gif sur Yvette Cedex
P. Le Fevre
Affiliation:
LURE, batiment 209 D, Université Paris Sud, 91405 Orsay Cedex
H. Magnan
Affiliation:
CEA, DSM / DRECAM / SRSIM, CEA / SACLAY, 91191 - Gif sur Yvette Cedex
J. P. Duraud
Affiliation:
Laboratoire Pierre Süe, CEA-CNRS, CEA / SACLAY, 91191 - Gifsur Yvette Cedex
Get access

Abstract

The kinetics of the growth of copper clusters on the alumina (0001) surface was studied as a function of surface structure, using EXAFS at the Cu K edge. Equivalent Cu coverages ranging from 0.5 to 4 equivalent monolayers were deposited in situ, at room temperature, on alumina (0001) surfaces exhibiting the (1×1) or the reconstructed structure. The evolution of mean cluster size with deposition time was followed from the mean Cu coordination number in the clusters deduced from the EXAFS data. The increase of the mean cluster radius with deposition time is characteristic of a coalescence mechanism on both surfaces. The growth is quicker on the reconstructed surface, likely due to different surface diffusion properties of both surfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Wu, Y., Garfunkel, E., Madey, T. E., J. Vac. Sci. Technol. A4 (1996) 1662, and References therein.Google Scholar
[2] Renaud, G., Villette, B., Vilfan, I., Bourret, A., Phys. Rev. Lett. 73 (1994) 1825 ; P. Guénard, G. Renaud, A. Barbier, M. Gautier-Soyer, Mat. Res. Soc. Symp. Proc. Vol.437 (1986) 15.Google Scholar
[3] Gautier, M., Pham Van, L., Duraud, J. P., Europhys. Lett. 18 (1992) 175 ; Surf Sci. Lett. 249 (1991) L327.Google Scholar
[4] Gautier-Soyer, M., Gota, S., Douillard, L., Duraud, J. P., Fèvre, P. Le, Phys. Rev. B 54 (1996) 10366 S. Gota, M. Gautier-Soyer, L. Douillard, J. P. Duraud, P. Le Fèvre, J. Phys. IV France 7 (1997) 675.Google Scholar
[5] Gota, S., Gautier, M., Douillard, L., Thromat, N., Duraud, J. P., Fèvre, P. Le, Surf Sci. 323 (1995) 163.Google Scholar
[6] Montano, P. A., Shenoy, G. K., Alp, E. E., Schulze, W., Urban, J., Phys. Rev. Lett. 56 (1986) 2076.Google Scholar
[7] Pinto, A., Pennisi, A. R., Faraci, G., D'Agostino, G., Mobilio, S., Boscherini, F., Phys. Rev. B 51 (1995) 5315.Google Scholar
[8] Teo, B. K., in «(EXAFS : Basic principles and data analysis)» Springer Verlag, Berlin, 1984.Google Scholar
[9] Mc Kale, A. G., Veal, B. W., Paulikas, A. P., Chan, S. K. and Knapp, G. S., J. Am. Chem. Soc. 110 (1988) 3763.Google Scholar
[10] Beysens, D., Knobler, C. M., Schaffar, H., Phys. Rev. B 41 (1990) 9814.Google Scholar
[11] Gota, S., Gautier-Soyer, M., Douillard, L., Duraud, J. P., Fevre, P. Le, Surf Sci. 352–354 (1996) 1016.Google Scholar