Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-08T07:32:36.110Z Has data issue: false hasContentIssue false

keV- and MeV- Ion Beam Synthesis of Buried SiC Layers in Silicon

Published online by Cambridge University Press:  21 February 2011

J.K.N. Lindner
Affiliation:
Universität Augsburg, Institut für Physik, D-86135 Augsburg, Germany
A. Frohnwieser
Affiliation:
Universität Augsburg, Institut für Physik, D-86135 Augsburg, Germany
B. Rauschenbach
Affiliation:
Universität Augsburg, Institut für Physik, D-86135 Augsburg, Germany
B. Stritzker
Affiliation:
Universität Augsburg, Institut für Physik, D-86135 Augsburg, Germany
Get access

Abstract

Homogenous, epitaxial buried layers of 3C-SÍC have been formed in Si(100) and Si(lll) by ion beam synthesis (IBS) using 180 keV high dose C ion implantation. It is shown that an annealing temperature of 1250 °C and annealing times of 5 to 10 h are sufficient to achieve well-defined Si/SiC/Si layer systems with abrupt interfaces. The influence of dose, annealing time and temperature on the layer formation is studied. The favourable dose is observed to be dependent on the substrate orientation. IBS using 0.8 MeV C ions resulted in a buried SiC precipitate layer of variable composition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Borders, J.A., Picraux, S.T., and Beezhold, W., Appl. Phys. Lett. 18 (1971) 509.Google Scholar
2 Rotheraund, W. and Fritzsche, C.R., J. Electrochem. Soc. 121 (1974) 587.Google Scholar
3 Manu, S., Mater. Sei. Rep. 8 (1992) 1.Google Scholar
4 Lindner, J.K.N., Nucl. Instr. and Meth. B 84 (1994) 153.Google Scholar
5 Reeson, K.J., Hemment, P.L.F., Stoemenos, J., Davis, J.R., and Celler, G.K., Inst. Phys. Conf. Ser. 87 (1987) 427.Google Scholar
6 Reeson, K.J., Hemment, P.L.F., Stoemenos, J., Davis, J., and Celler, G.E., Appl. Phys. Iff 51 (1987) 2243.Google Scholar
7 Reeson, K.J., Hemment, P.L.F., Stoemenos, J., Davis, J.R., and Celler, G.K., Mater. Res. Soc. Symp. Proc. 107 (1988) 473.Google Scholar
8 Reeson, K.J., Stoemenos, J., and Hemment, P.L.F., Thin Solid Films 191 (1990) 147.Google Scholar
9 Martin, P., Daudin, B., Dupuy, M., Ermolieff, A., Olivier, M., Papon, A.M., and Rolland, G., J. Appl. Phys. 67 (1990) 2908.Google Scholar
10 Nussupov, K.Kh., Sigle, V.O., and Bejsenkhanov, N., NucLInstr. and Meth. B82 (1993) 69.Google Scholar
11 Nejim, A., Stoemenos, J., and Hemment, P.L.F., to be published.Google Scholar
12 von Munch, W. and Wiebach, S., Diam. and Rel. Mat 3 (1994) 500.Google Scholar
13 Chayahara, A., Kiuchi, M., Kinomura, A., Mokuno, Y., Horino, Y., and Fujii, K., Jpn. J. Appl. Phys. 32 (1993) L1286.Google Scholar
14 Serre, C., Pérez-Rodríguez, A., Romano-Rodríguez, A., Morante, J.R., Kögler, R., and Skorupa, W., to be published in J. Appl. Phys. Google Scholar