Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-09T10:47:35.148Z Has data issue: false hasContentIssue false

Isotopic Fractionation of U in Rocks Reflecting Redox Conditions around a Groundwater Flow Route

Published online by Cambridge University Press:  21 March 2011

Juhani Suksi
Affiliation:
Laboratory of Radiochemistry, University of Helsinki, Finland
Kari Rasilainen
Affiliation:
VTT Energy, Espoo, Finland
Get access

Abstract

Abstract; Low 234U/238U activity ratios observed in rock and mineral samples were scrutinized. U isotope fractionation leading to 234U depletion (234U/238U<1) in rocks appears to be linked to changes in redox conditions. The fractionation takes place as selective chemical release dominates over direct physical μ recoil. This preferential 234U release depends on the valence contrast between the U isotopes, 238U occurring in +4 form and ingrown 234U, due to oxidizing microenvironment, in +6 form. Observed U isotopic fractionation combined with other uranium series disequilibrium measurements provides a tool for locating redox fronts formed as a result low temperature rock-groundwater interaction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ivanovich, M. and Harmon, R. S. (eds.), 1992. Uranium-series Disequilibrium, Applications to Earth, Marine, and Environmental Sciences, Second edition, Oxford Science Publications, 910 p.Google Scholar
2. Osmond, J.K. and Cowart, J.B., 1976. The theory and uses of natural uranium isotopic variations in hydrology. Atomic Energy Rev. 14, 621679.Google Scholar
3. Rössler, K., 1983. Uranium recoil reactions. In: Gmelin Handbook of Inorganic Chemistry, 8th Edition, Uranium (Supplement Volume A6), Springer Verlag, Berlin, 135164.Google Scholar
4. Osmond, J.K., Cowart, J.B. and Ivanovich, M., 1983. Uranium isotopic disequilibrium in ground water as an indicator of anomalies. Int. J. Appl. Radiat. Isot. Vol. 34, No. 1, 283308.Google Scholar
5. MacKenzie, A. B., Scott, R.D., Linsalata, P., and Miekeley, N., 1992. Natural decay series studies of the redox front system in the Poços de Caldas uranium mineralisation. J. Geochem. Explor. 45, 289322.Google Scholar
6. Mohamad, D. B., MacKenzie, A. B., Stephens, W. E., and Russel, M. J., 1992. Exploration methods for nuclear waste repositories or mineral deposits - from source to sink, where's the front? Trans. Inst. Min. Metall. (Sect. B: Appl. earth sci.) 101, 139146.Google Scholar
7. Griffault, L.Y., Gascoyne, M., Kamineni, C., Kerrich, R., and Vandergraaf, T. T., 1993. Actinide and rare earth element characteristics of deep fracture zones in the Lac du Bonnet granitic batholith, Manitoba, Canada. Geochim. Cosmochim. Acta 57, 11811202.Google Scholar
8. Mazurek, M., Alexander, W. R., and MacKenzie, A. B., 1996. Contaminant retardation in fractured shales: matrix diffusion and redox front entrapment. J. Contam. Hydrol. 21, 7184.Google Scholar
9. Blomqvist, R., Ruskeeniemi, T., Kaija, J., Ahonen, L., Paananen, M., Smellie, J., Grundfelt, B., Pedersen, K., Bruno, J., Pérez del Villar, L., Cera, E., Rasilainen, K., Pitkänen, P., Suksi, J., Casanova, J., Read, D. and Frape, S., 2000, The Palmottu natural analogue project. Phase II: Transport of radionuclides in a natural flow system at Palmottu. (to be published in EUR - series.)dGoogle Scholar
10. Petit, J.-C., Langevin, Y., and Dran, J.-C., 1985. U-234/U-238 disequilibrium in nature: theoretical reassessment of the various proposed models. Bull. Minéral 108, 745753.Google Scholar
11. Ordonez Regil, E., Schleiffer, J.J., and Adloff, J. P., 1989. Chemical Effects of μ-Decay in Uranium Minerals. Radiochim. Acta 47, 177185.Google Scholar
12. Adloff, J.P. and Roessler, K., 1991. Recoil and Transmutation Effects in the Migration Behavior of Actinides. Radiochimica Acta 52/53, 269274.Google Scholar
13. Suksi, J. and Rasilainen, K, 1996. On the Role of μ-Recoil in Uranium Migration, Radiochimica Acta 74, 297302.Google Scholar
14. Avci, N.I. 1987. Calculation of radionuclide inventories in a nuclear waste disposal vault with leakage. Transactions of the American Nuclear Society 54, p. 106107.Google Scholar
15. Ervanne, H. and Suksi, J., 1996. Comparison of Ion-Exchange and Coprecipitation Methods in Determining Uranium Oxidation States in Solid Phases. Radiochemistry, 38, 324327.Google Scholar
16. Suksi, J., Rasilainen, K., Casanova, J., Ruskeeniemi, T., Blomqvist, R. and Smellie, J.A.T. 1999. U-series disequilibria in a groundwater flow route as an indicator of uranium migration processes. Journal of Contaminant Hydrology (in print).Google Scholar
17. Rasilainen, K. and Suksi, J. 1997. A multisystem modeling approach for uranium-series dating. Nuclear Technology 120, 254260.Google Scholar