Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-19T14:31:29.838Z Has data issue: false hasContentIssue false

Iron Sulfide (FeS2) Thin Films From Single-Source Precursors by Aerosol-Assisted Chemical Vapor Deposition (AACVD)

Published online by Cambridge University Press:  10 February 2011

Paul O'Brien
Affiliation:
Manchester Materials Sciences Centre and Department of Chemistry, University of Manchester, Manchester, M13 9PL, UKpaul.obrien@man.ac.uk
David J. Otway
Affiliation:
Department of Chemistry, Imperial College of Science, Technology and Medicine, Exhibition Road, London, SW7 2AY, UK
Jin-Ho Park
Affiliation:
Manchester Materials Sciences Centre and Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK Department of Chemistry, Imperial College of Science, Technology and Medicine, Exhibition Road, London, SW7 2AY, UK Email: j.h.park@ic.ac.uk
Get access

Abstract

Dialkyl (or mixed alkyl)-dithiocarbamato iron(III) complexes have been used for the deposition of iron sulfide thin films using chemical vapor deposition techniques. The single-source precursors used in this work have been prepared by the reaction of FeCl3with dialkyldithiocarbamate sodium salts and characterized by a number of analytical techniques. Good quality thin films of FeS2 have been prepared from the single-source metal organic precursor, [Fe(S2CNMeiPr)3], by AACVD. XRD patterns of the films indicated crystalline iron sulfide (FeS2) grown at between 375 – 450 °C. SEM images show the films to have reasonable morphology and to be crystalline.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ennaoui, A., Fiechter, S., Pettenkofer, C., Alonso-Vante, N., Buker, K., Bronold, M., Hopfner, C., and Tributsch, H., Sol. Energy Mater. Sol. Cells 29, 289 (1993).Google Scholar
2 Schleigh, D.M. and Chang, H.S.W., J. Crystal Growth 112, 737 (1991).Google Scholar
3 Thomas, B., Hoepfner, C., Ellmer, K., Fiechter, S. and Tributsch, H., J. Crystal Growth 146, 630 (1995).Google Scholar
4 Hoepfner, C., Ellmer, K., Ennaoui, A., Pettenkofer, C., Fiechter, S. and Tributsch, H., J. Crystal. Growth, 151, 325 (1995).Google Scholar
5 Thomas, B., Cibik, T., Hoepfner, C., Diesner, K., Ehlers, G., Fiechter, S. and Ellmer, K., J. Mat. Sci. 9, 61 (1998).Google Scholar
6 Meester, B., Reijnen, L., Goossens, A. and Schoonman, J., J. Phys. IV France 9, Pr8-613 (1999).Google Scholar
7 Smestad, G., Ennaoui, E., Fiechter, S., Tributsch, H., Hofman, W. K. and Birkholz, M., Sol. Energy Mater. 20, 149, 1990.Google Scholar
8 Ferrer, I.J. and Sanchez, C., J. Appl. Phys. 70, 2641 (1991).Google Scholar
9 Birkholz, M., Lichtenberger, D., Hoepfher, C. and Fiechter, S., Sol. Energy Mater. Sol. Cells 27, 243 (1992).Google Scholar
10 Bausch, S., Sailer, B., Keppner, H., Willeke, G., Bucher, E. and Frommeyer, G. Appl. Phys. Lett. 57, 25 (1990).Google Scholar
11 Ennaoui, A., Schlichtlorel, G., Fiechter, S. and Tributch, H., Sol. Energy Mater. Sol. Cells 25, 169(1992).Google Scholar
12 Smestad, G., Silva, A. Da, Tributsch, H., Fiechter, S., Kunst, M., Meziani, N. and Birkholz, M., Sol. Energy Mater. 18, 299 (1989).Google Scholar
13 Rezig, B., Dalman, H., Kanzai, M., Renewable Energy 2, 125 (1992).Google Scholar
14 O'Brien, P., Otway, D.J. and Walsh, J.R., Thin Solid Films 315, 57 (1998).Google Scholar