Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-20T14:04:24.308Z Has data issue: false hasContentIssue false

Ionic Properties of Vanadium Pentoxide Gels

Published online by Cambridge University Press:  25 February 2011

J. Livage
Affiliation:
Chimie de la Matière Condensée, Université Pierre et Marie Curie, 4, place Jussieu - 75252 Paris Cedex 05, France
P. Barboux
Affiliation:
Chimie de la Matière Condensée, Université Pierre et Marie Curie, 4, place Jussieu - 75252 Paris Cedex 05, France
J. C. Badot
Affiliation:
Chimie de la Matière Condensée, Université Pierre et Marie Curie, 4, place Jussieu - 75252 Paris Cedex 05, France
N. Baffier
Affiliation:
Chimie de la Matière Condensée, Université Pierre et Marie Curie, 4, place Jussieu - 75252 Paris Cedex 05, France
Get access

Abstract

Vanadium pentoxide gels V2O5·nH2O are actually hydrous oxides. Water adsorption and dissociation occurs at the surface of the oxide leading to negatively charged oxide particles surrounded by an acid aqueous medium. Ionic conductivity is observed, arising from proton diffusion through the water molecules. This process mainly depends on the nature of adsorbed water molecules. Proton conductivity is strongly related to the water adsorption isotherm.

Ion exchange readily occurs at the oxide-solution interface when the gel is dipped into an aqueous solution of a metal chloride. New vanadium bronzes have been obtained upon heating such gels around 300° C. They exhibit interesting properties as reversible cathodes.

Electrochemical insertion of Li* into the gel phase is quite easy. This is due to the very open structure of the gel and the mixed valence behavior of the vanadium oxide.

Transition metal oxide gels could then be used as thin films or pressed pellets for making micro-ionic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Onoda, G.Y. and Casey, J.A., Ultrastructure Processing of Ceramics. Glasses and Composites, edited by Hench, L.L. and Ulrich, D.R. (J. Wiley Publishers, New York, 1984), p.374.Google Scholar
2. England, W.A., Cross, M.G., Hamnett, A., Wiseman, P.J. and Goodenough, J.B., Solid State Ionics, 1, 231 (1980).CrossRefGoogle Scholar
3. Gharbi, N., Sanchez, C., Livage, J., Nejem, L. and Lefebvre, J., Inorg. Chem., 21. 2758 (1982).Google Scholar
4. Colomban, P. and Novak, A., J. Molecular Structure (in the press).Google Scholar
5. Dzimitrowicz, D.J., Goodenough, J.B. and Wiseman, P.J., Mat. Res. Bull, 17. 971 (1982).Google Scholar
6. Slade, R.C.T. and Barker, J., Solid State Ionics, 24, 147 (1987).Google Scholar
7. Aldebert, P., Baffier, N., Gharbi, N. and Livage, J., Mat. Res. Bull., 16, 669 (1981).Google Scholar
8. Barboux, P., Morineau, R. and Livage, J., Solid State Ionics (in the press).Google Scholar
9. Abello, L. and Pommier, C., J. Chim. Phys., 80, 373 (1983).CrossRefGoogle Scholar
10. Abello, L., Husson, E., Repelin, Y. and Lucazeau, G., J. Solid State Chem., 56, 379 (1985).CrossRefGoogle Scholar
11. Repelin, Y., Husson, E., Abello, L. and Lucazeau, G., Spectrochimica Acta, 41A. 993 (1985).CrossRefGoogle Scholar
12. Vandenborre, M.T., Prost, R., Huard, E. and Livage, J., Mat. Res. Bull., 18, 1133 (1983).CrossRefGoogle Scholar
13. Badot, J.C., Baffier, N., Fourrier-Lamer, A. and Colomban, P., Solid State Ionics, 27 (1988).Google Scholar
14. Badot, J.C., Fourrier-Lamer, A. and Baffier, N., J. Physique, 46, 2107 (1985).CrossRefGoogle Scholar
15. Raistrick, I.D., Solid State Ionics, 18–19. 40 (1986).CrossRefGoogle Scholar
16. Barboux, P., Baffier, N., Morineau, R. and Livage, J., Solid State Ionics, 9–10. 1073 (1983).CrossRefGoogle Scholar
17. Krener, K.D., Rabenau, A. and Weppuer, W., Angew. Chem., Int. Ed. Engl., 21, 208 (1982).Google Scholar
18. Home, A.T. and Shilton, M.G., J. Solid State Chem., 23, 345 (1979).Google Scholar
19. Ruvarac, A., Inorganic Ion Exchange Materials, edited by Clearfield, A. (C.R.C. Press publisher, 1982), p.141.Google Scholar
20. Abe, M., Inorganic Ion Exchange Materials. edited by Clearfield, A. (C.R.C. Press publisher, 1982), p.161.Google Scholar
21. Bouhaouss, A., Aldebert, P., Baffier, N. and Livage, , Rev. Chim. Miner., 22, 417 (1985).Google Scholar
22. Znaidi, L., Lemordant, D. and Baffier, N., Solid State Ionics (in the press).Google Scholar
23. Aldebert, P., Baffier, N., ‥ , Legendre and Livage, J., Rev. Chim. Miner., 19, 485 (1982).Google Scholar
24. Pereira-Ramos, J.P., Znaidi, L., Messina, R. and Baffier, N., Solid State Ionics (in the press).Google Scholar
25. Walk, C.R., Lithium batteries. edited nby Cabano, J.P. (Academic Press publisher, London 1983) p.265.Google Scholar
26. Murphy, D.W., Christian, P.A., Disalvo, F.J. and Waszazak, J.V., Inorg. Chem., 18, 2800 (1979).Google Scholar
27. Tranchant, A., Messina, R. and Perichon, J., J. Electroanal. Chem., 113. 225 (1980).Google Scholar
28. Dickens, P.G., French, S.J., Hight, A.T. and Pye, M.F., Mat. Res. Bull., 14, 1295 (1979).CrossRefGoogle Scholar
29. Sakurai, Y. and Yamaki, J., J. Electrochem. Soc, 132, 512 (1985).Google Scholar
30. Paguier, T., Fouletier, M. and Souquet, J.L., Solid State Ionics, 9–10. 649 (1983).Google Scholar
31. Sakurai, Y., Okada, S., Yamaki, J. and Okada, T., J. Power Sources, 20, 173 (1987).CrossRefGoogle Scholar
32. Nabavi, M., Sanchez, C., Taulelle, F., de Guibert, A. and Livage, J., Solid State Ionics (in the press).Google Scholar
33. West, K., Zachaw-Christiansen, B., Ostergard, M.J.L. and Jacobsen, T., J. Power Sources, 20, 165 (1987).Google Scholar
34. Araki, B., Mailhé, C., Baffier, N., Livage, J. and Vedel, J., Solid State Ionics, 9–10. 439 (1983).Google Scholar
35. Lemordant, D., Bouhaouss, A., Aldebert, P. and Baffier, N., J. Chim. Phys., 83, 105 (1986).Google Scholar
36. Yoshino, T., Baba, N. and Kouda, Y., Japn. J. of Appl. Phys., 26, 782 (1987).CrossRefGoogle Scholar
37. Clearfield, A., Chem. Rev., 88, 125 (1988).CrossRefGoogle Scholar
38. Oi, T., Ann. Rev. Mater. Sci., 16, 185 (1986).Google Scholar
39. Harm, F. and Rumpler, A., 5th Int. Cong. Pure Appl. Chem., 59 (1903).Google Scholar
40. Kumagai, N. and Tanno, K., Electrochimica Acta, 32, 1521 (1987).CrossRefGoogle Scholar
41. Chemseddine, A., Morineau, R. and Livage, J., Solid Stata Ionics, 5, 357 (1983).CrossRefGoogle Scholar
42. Kuwabara, K., Ichikawa, S. and Sugiyama, K., J. Mater. Sci., 22, 4499 (1987).CrossRefGoogle Scholar