Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-21T13:47:01.192Z Has data issue: false hasContentIssue false

Ionic Properties of Hydrogenated and Fluorinated Fullerenes

Published online by Cambridge University Press:  22 February 2011

R.L. Hettich
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831-6125
C. Jin
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831-6125
P.F. Britt
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831-6125
A.A. Tuinman
Affiliation:
Department of Chemistry, The University of Tennessee, Knoxville, TN 37996-1600
R.N. Compton
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831-6125 Department of Chemistry, The University of Tennessee, Knoxville, TN 37996-1600
Get access

Abstract

The ionization potentials (IP) and electron affinities (EA) for a number of hydrogenated and fluorinated derivatives of C60 and C70 have been determined using the charge exchange “bracketing” technique. Samples of C60Hx and C70Hy were prepared by direct solid phase hydrogenation (x=2-18, y=2-30) or platinum oxide catalytic hydrogen reduction (x=36, y=36). The IP's for C60H2-18 are between 6.75 and 7.53 eV for even x<10 and lower than 6.75 for odd x<10. The EAs for C60F44,46,48, and C70F52,54 were “bracketed” to be 4.0 ± 0.25 eV. The highly fluorinated chiral C3h molecule C60F48 was observed to directly attach two electrons in the gas phase to produce C60F482- and C60F462− + F2−. Studies of the metastable decompositions and collision-induced dissociation of C60F482− showed fluorine atom and F2 loss, but no loss of an electron. In addition, the C60F48,46,442− dianions do not charge exchange with molecules possessing high electron affinities, including the neutral parent compound, C60F482− (EA = 4.06 eV). The remarkable stability of C60F482− to the removal of an excess electron is attributed to a long-range Coulomb barrier which is built from the bound state for the two electrons near the molecule and the electron-electron Coulomb repulsion between the two at large distance.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gakh, A.A., Tuinman, A.A., Adcock, J.L., and Compton, R.N., Tetrahedron Lett., 34, 7167 (1993).Google Scholar
2. Dunlap, B.I., Brenner, D.W., Mintmire, J.W., Mowrey, R.C., and White, C.T., J. Phys. Chem., 95, 5763 (1991).Google Scholar
3. Saunders, M. Science, 253, 330 (1991).Google Scholar
4. Guo, T. and Scuseria, G.E., Chem. Phys. Lett., 191, 527 (1992).Google Scholar
5. Dixon, D.A., Matsuzawa, N., Fukunaga, T., Teppe, F.N., J. Phys. Chem., 96, 6107 (1992); N. Matsuzawa, D.A. Dixon, and T.Fukunaga, J. Phys. Chem., 96, 7594 (1992).Google Scholar
6. Jin, C., Hettich, R.L., Compton, R.N., Joyce, D., Blencoe, J., and Burch, T., J. Phys. Chem., in press, (1994).Google Scholar
7. Tuinman, A. A., Mukherjee, P., Adcock, J. L., Hettich, R. L., and Compton, R. N., J. Chem. Phys. 96, 7584 (1992).Google Scholar
8. Gakh, A.A., Tuinman, A.A., Adcock, J.L., Sachleben, R.A., and Compton, R.N., J. Amer. Chem. Soc., 116, 819 (1994).Google Scholar
9. For further details on the FTMS technique, see references 6 and 7.Google Scholar
10. For further details on the magnetic sector technique, see references 1,7, and 8.Google Scholar
11. Ruchardt, C., Gerst, M., Ebenhoch, J., Beckhaus, H.D., Campbell, E.E.B., Tellgmann, R., Schwarz, H., Weiske, T., and Pitter, S., Angew. Chem. Int. Ed. Engl., 32 584 (1993).Google Scholar
12. Benkeser, R.A., Robinson, R.E., Sauve, D.M., and Thomas, O.H. J. Amer. Chem. Soc., 77, 3230 (1955).Google Scholar
13. Haufler, R. E.; Conceicao, J.; Chibante, L. P. F.; Chai, Y.; Byrne, N. E.; Flanagan, S.; Haley, M. M.; O'Brien, S. C.; Pan, C.; Xiao, Z; Billups, W. E.; Ciufolini, M. A; Hauge, R. H.; Margrace, J. L.; Wilson, L. J.; Curl, R. F.; Smalley, R. E., J. Phys. Chem. 94, 167, (1990).Google Scholar
14. Assink, R. A.; Schirber, J. E.; Loy, D. A.; Morosin, B.; Carlson, G. A., J. Mat. Res. 7, 2136, (1992).Google Scholar
15. Lias, S.G., Bartmess, J.E., Liebman, J.F., Holmes, J.L., Levin, R.D., and Mallard, G., J. Phys. Chem. Ref. Data, 17, Suppl. 1, (1988).Google Scholar
16. Zimmerman, J. A.; Eyler, J. R.; Bach, S. B. H.; McElvany, S. W., J. Chem. Phys. 94, 3556, (1991).Google Scholar
17. Matsuzawa, N.; Fukunaga, T.; Dixon, D.A., J. Phys. Chem. 96, 10747, (1992).Google Scholar
18. Hettich, R.L., Jin, C., and Compton, R.N., Int. J. Mass Spec. Ion Proc., in press.Google Scholar
19. Wang, L-S., Conceicao, J., Jin, C., and Smalley, R.E., Chem. Phys. Lett., 182, 5 (1991).Google Scholar
20. Scuseria, G.E., private communicationGoogle Scholar
21. Jin, C., Hettich, R.L., Compton, R.N., Tuinman, A.A., A. Derecskei-Kovas, Marynick, D.S., and Dunlap, B.I., “Attachment of Two Electrons to C60F48: Coulomb Barriers in Doubly Charged Anions,” Phys. Rev. Lett., submitted.Google Scholar
22. Limbach, P. A., Schweikhard, L., Cowen, K. A., McDermott, M. T., A. Marshall, G., and Coe, J. V., J. Am. Chem. Soc. 113, 6795 (1991).Google Scholar
23. Hettich, R. L., Compton, R. N., and Ritchie, R. H., Phys. Rev. Lett. 67, 1242 (1991).Google Scholar
24. Mandelbaum, A. and Etinger, A., Org. Mass Spec. 28, 487 (1993).Google Scholar
25. Miller, K.J. and Savchik, J.A., J. Amer. Chem. Soc. 101, 7206 (1979).Google Scholar