Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-25T02:20:59.719Z Has data issue: false hasContentIssue false

Ion-assisted Sputter Deposition of Microcrystalline Silicon Films with Pulsed-DC Plasma Excitation

Published online by Cambridge University Press:  17 March 2011

P. Reinig
Affiliation:
Hahn-Meitner-Institut Berlin, Abt. Silizium-Photovoltaik, Kekuléstr.5, D-12489 Berlin, Germany
F. Fenske
Affiliation:
Hahn-Meitner-Institut Berlin, Abt. Silizium-Photovoltaik, Kekuléstr.5, D-12489 Berlin, Germany
B. Selle
Affiliation:
Hahn-Meitner-Institut Berlin, Abt. Silizium-Photovoltaik, Kekuléstr.5, D-12489 Berlin, Germany
W. Fuhs
Affiliation:
Hahn-Meitner-Institut Berlin, Abt. Silizium-Photovoltaik, Kekuléstr.5, D-12489 Berlin, Germany
Get access

Abstract

We have applied a novel Ion-Assisted Sputter Deposition (IASD) method to deposit microcrystalline silicon (µc-Si) thin films with high deposition rates. An unbalanced magnetron sputter source together with an asymmetrical bipolar pulsed-DC plasma excitation operating in the frequency range 50-250 kHz was used for realizing high ion fluxes to the growing film. µc-Si films of high crystallinity are obtained at T > 400 °C with growth rates of up to 90 nm/min. The crystallinity of the films is characterized by the thickness-independent ratio of the optical thickness n·d determined by FTIR measurements and the atomic area density N·d as given by RBS analysis.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

1 Rabalais, J. W., al-Bayati, A. H., Boyd, K. J., Marton, D., Kulik, J., Zhang, Z., Chu, W. K., Phys. Rev. B 53, 10781 (1996).Google Scholar
2 Murty, M. V. R. and Atwater, H. A., Phys. Rev. B 49, 8483 (1994).Google Scholar
3 Ohmi, T., Hashimoto, K., Morita, M., Shibata, T., J. Appl. Phys. 69, 2062 (1991).10.1063/1.348732Google Scholar
4 Schiller, S., Goedicke, K., Reschke, J., Kirchhoff, V., Schneider, S., Milde, F., Surf. Coat. Technol. 61, 331 (1993).Google Scholar
5 Macák, K., Kouznetsov, V., Schneider, J., Helmersson, U., Petrov, I., J. Vac. Sci. Technol. A 18, 1533 (2000).10.1116/1.582380Google Scholar
6 Jonsson, L. B., Nyberg, T., Katardjiev, I., Berg, S., Thin Solid Films 365, 43 (2000).Google Scholar
7 Window, B. and Harding, G. L., J. Vac. Sci. Technol. A 8, 1277 (1990).Google Scholar
8 Freeman, E. C. and Paul, W., Phys. Rev. B 20, 716 (1979).Google Scholar
9 Yang, Y. H. and Abelson, J. R., Appl. Phys. Lett. 67, 3623 (1995).Google Scholar
10 Matsuoka, M. and Tohno, S.-i., J. Vac. Sci Technol. A 13, 305 (1995).Google Scholar
11 Schropp, R. E. I. and Zeman, M., Amorphous and Microcrystalline Silicon Solar Cells. Modeling, Materials and Device Technology (Kluwer, Dordrecht, 1998).10.1007/978-1-4615-5631-2Google Scholar
12 Custer, J. S., Thompson, M. O., Jacobson, D. C., Poate, J.M., Roorda, S., Sinke, W.C., Spaepen, F., Appl. Phys. Lett. 64, 437 (1994).Google Scholar