Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-19T04:31:54.162Z Has data issue: false hasContentIssue false

Ion-Assisted Deposition of Silicon Epitaxial Films with High Deposition Rate Using Low Energy Silicon Ions

Published online by Cambridge University Press:  17 March 2011

Lars Oberbeck
Affiliation:
Institute of Physical Electronics, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
Thomas A. Wagner
Affiliation:
Institute of Physical Electronics, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
Ralf B. Bergmann
Affiliation:
Institute of Physical Electronics, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
Get access

Abstract

Ion-assisted deposition (IAD) enables low temperature (≥ 435°C), high-rate (≤ 0.5 μm/min) epitaxial growth of silicon films. Therefore, IAD is an interesting deposition technique for microelectronic devices and thin film solar cells. The Hall-mobility of monocrystalline epitaxial layers increases with deposition temperature Tdep and reaches values comparable to those of bulk Si at Tdep ≥ 540°C. Polycrystalline epitaxial layers exhibit inhomogeneous electrical properties, as shown by Light Beam Induced Current measurements. Recombination within the grains dominates over recombination at grain boundaries. Secco etching identifies an inhomogeneous density of extended structural defects in the polycrystalline epitaxial layers and in the substrate. A major part of the extended defects in the epitaxial layers originates from defects in the substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sedgwick, T. O. and Agnello, P. D., J. Vac. Sci. Technol. A 10, 1913, (1992).Google Scholar
2. Bergmann, R. B., Rinke, T. J., Oberbeck, L., and Dassow, R., in Perspectives, Science, and Technologies for Novel Silicon on Insulator Devices, Hemment, P. L. F., Lysenko, V. S., and Nazarov, A. N. eds., NATO Science Series 3, High Technology - Vol. 73 (Kluwer Academic Publishers, Dordrecht, 2000), p. 109.Google Scholar
3. Bergmann, R. B., Appl. Phys. A 69, 187, (1999).Google Scholar
4. Tae, H.-S., Hwang, S.-H., Park, S.-J., Yoon, E., and Whang, K.-W., J. Appl. Phys. 78, 4112, (1995).Google Scholar
5. Thiesen, J., Iwaniczko, E., Jones, K. M., Mahan, A., and Crandall, R., Appl. Phys. Lett. 75, 992, (1999).Google Scholar
6. Eaglesham, D. J., Applied Physics Reviews 77, 3597, (1995).Google Scholar
7. Oelting, S., Martini, D., Bonnet, D., in Proc. 11th E. C. Photovoltaic Solar Energy Conf., edited by Guimaraes, L., Palz, W., Dereyff, C., Kiess, H., Helm, P. (Harwood Academic Publishers, Chur, 1992), p. 491.Google Scholar
8. d'Aragona, F. Secco, J. Electrochem. Soc. 119, 948, (1972).Google Scholar
9. Rabalais, J. W., Al-Bayati, A. H., Boyd, K. J., and Marton, D., Kulik, J., Zhang, Z., and Chu, W. K., Phys. Rev. B 53, 10781, (1996).Google Scholar
10. Oberbeck, L., Bergmann, R. B., Jensen, N., Oelting, S., and Werner, J. H., Solid State Phenomena 67–68, 459, (1999).Google Scholar
11. Lifshitz, Y., Kasi, S. R., and Rabalais, J. W., Phys. Rev. Lett. 62, 1290, (1989).Google Scholar
12. Kern, W. and Puotinen, D. A., RCA Rev. 6, 187, (1970).Google Scholar
13. Klaassen, D. B. M., Solid-State Electronics 35, 953, (1992).Google Scholar
14. Oberbeck, L. and Bergmann, R. B., to be published.Google Scholar