Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-29T01:04:24.876Z Has data issue: false hasContentIssue false

Ion Induced Grain Growth in Pd

Published online by Cambridge University Press:  28 February 2011

D. A. Lilienfeld
Affiliation:
National Nanofabrication Facility, Cornell University
P. Bøorgesen
Affiliation:
Department of Materials Science and Engineering, Cornell University
P. Meyer
Affiliation:
National Nanofabrication Facility, Cornell University and Columbia University.
Get access

Abstract

Ion irradiation induced grain growth size distributions in Pd are examined at low temperatures. Two features are observed: 1) A majority of the grains saturate in size. 2) Some grains achieve sizes much larger than the average grain size and continue to grow with ion dose. However, by careful choice of ion mass and ion dose, it is possible to produce a sample possessing a monomodal grain size. This process will have applications in producing thin films of nanocrystalline materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) See the following symposium proceedings: Mat. Res. Soc Symp. Proc. Vol. 132 (1989), Mat. Res. Soc Symp. Proc. Vol. 164 (1989), Mat. Res. Soc Symp. Proc. Vol. 195 (1989), and Mat. Res. Soc Symp. Proc. Vol. 206 (1989)Google Scholar
2) Van Wyk, G. N. and Smith, H. J., Nucl. Instrum. Methods 170 433 (1980)Google Scholar
3) Wang, P., Thompson, D. A., and Smeltzer, W. W., Nucl. Instrum. Methods B7/8 97 (1985)Google Scholar
4) Wang, P., Thompson, D. A., and Smeltzer, W. W., Nucl. Instrum. Methods B16 288 (1986)CrossRefGoogle Scholar
5) Atwater, H. A., Smith, H. I. and Thompson, C. V., Mat. Res. Symp. Proc. Vol. 51 337 (1986)Google Scholar
6) Atwater, H. A., Ph.D Thesis MIT (1987)Google Scholar
7) Atwater, H. A., Thompson, C. V. and Smith, H. I., J. Appl. Phys. 64 2337 (1988)CrossRefGoogle Scholar
8) Liu, J. C. and Mayer, J. W., Nucl. Instrum. Methods B19/20 538 (1987)Google Scholar
9) Liu, J. C., Nastasi, M., and Mayer, J. W., J. Appl. Phys. 62 423 (1987)CrossRefGoogle Scholar
10) Liu, J. C., Ph.D. Thesis, Cornell University, 1989 Google Scholar
11) Liu, J. C., Li, J., and Mayer, J. W., J. Appl. Phys. 67 423 (1987)Google Scholar
12) Pannikat, A. N., Bergesen, P., Lilienfeld, D. A., Lappalainen, R., Msaad, H. and Raj, R., Mat. Res. Soc. Symp. Proc. Vol. 202 633 (1991)CrossRefGoogle Scholar
13) Atwater, H. A., Thompson, C. V., Smith, H. I., Phys. Rev. Lett. 60 112 (1988)Google Scholar
14) Alexander, D. E., Ph.D. thesis, Univ. Michigan, 1990 Google Scholar
15) Alexander, D. E., Was, G. S., and Rehn, L. E., Proc. 7th Int. Conf. Ion Beam Modif. Mater., Knoxville, 1990 Google Scholar
16) Alexander, D. E. and Was, G. S., Mat. Res. Symp. Proc. Vol. 202 205 (1991)Google Scholar