Hostname: page-component-84b7d79bbc-7nlkj Total loading time: 0 Render date: 2024-07-25T06:44:29.586Z Has data issue: false hasContentIssue false

Ion Exchange Properties of Novel Hydrous Metal Oxide Materials

Published online by Cambridge University Press:  10 February 2011

T. J. Gardner
Affiliation:
Sandia National Laboratories P.O. Box 5800, MS 0709 Albuquerque, NM 87185-0709
L. I. McLaughlin
Affiliation:
Sandia National Laboratories P.O. Box 5800, MS 0709 Albuquerque, NM 87185-0709
Get access

Abstract

Hydrous metal oxide (HMO) materials are inorganic ion exchangers which have many desirable characteristics for catalyst support applications, including high cation exchange capacity, anion exchange capability, high surface area, ease of adjustment of acidity and basicity, bulk or thin film preparation, and similar chemistry for preparation of various transition metal oxides. Cation exchange capacity is engineered into these materials through the uniform incorporation of alkali cations via manipulation of alkoxide chemistry. Specific examples of the effects of Na stoichiometry and the addition of SiO2 to hydrous titanium oxide (HTO) on ion exchange behavior will be given. Acid titration and cationic metal precursor complex exchange will be used to characterize the ion exchange behavior of these novel materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dosch, R. G., Headley, T. J., and Hlava, P., J. Am. Ceram. Soc. 67, 354 (1984).Google Scholar
2. Clearfield, A., Ind. Eng. Chem. Res. 34, 2865 (1995).Google Scholar
3. Stephens, H. P., Dosch, R. G., and Stohl, F. V., Ind. Eng. Chem. Res. Devel. 24, 15 (1985).Google Scholar
4. Stephens, H. P. and Dosch, R. G., Stud. Surf. Sci. Catal. 31, 271 (1987).Google Scholar
5. Dosch, R. G., Stephens, H. P., and Stohl, F. V., Sandia Report, SAND89-2400, Sandia National Laboratories, Albuquerque, NM, 1990.Google Scholar
6. Dosch, R. G. and McLaughlin, L. I., Sandia Report, SAND92-0388, Sandia National Laboratories, Albuquerque, NM, 1992.Google Scholar
7. Lott, S. E., Gardner, T. J., McLaughlin, L. I., and Oelfke, J. B., Submitted to Fuel.Google Scholar
8. Lott, S. E., Gardner, T. I., McLaughlin, L. I., and Oelfke, J. B., Prep. of Papers, Fuel Div., Amer. Chen. Soc. 39 1073 (1994).Google Scholar
9. Bunker, B. C., Peden, C. H. F., Tallant, D. R., Martinez, S. L., and Turner, G. L. in Better Ceramics Through Chemistry II, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R., Mater. Res. Soc. Proc. 121, Pittsburgh, PA, 1988) p. 105.Google Scholar
10. Dosch, R. G., Stephens, H. P., Stohl, F. V., Bunker, B. C., and Peden, C. H. F., Sandia Report, SAND89-2399, Sandia National Laboratories, Albuquerque, NM, 1990.Google Scholar
11. Peden, C. H. F., Bunker, B. C., Martinez, S. L., Lytle, F. W., Greegor, R. B., and Turner, G. L., Prep. of Papers, Petrol. Div., Amer. Chem. Soc. 36 443 (1991).Google Scholar
12. Hardcastle, F. D. (private communication).Google Scholar
13. Bunker, B. C., Kirkpatrick, R. J., and Brow, R. K., J. Amer. Ceram. Soc. 74, 1425 (1991).Google Scholar
14. Bunker, B. C. and Balmer, M. L., submitted to Chem. of Mater.Google Scholar
15. Gardner, T. J., Ph.D. Thesis, University of New Mexico, 1994.Google Scholar
16. Baes, C. F. and Mesmer, R. E., The Hydrolysis of Cations, (John Wiley and Sons, New York, 1976).Google Scholar