Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T06:51:11.324Z Has data issue: false hasContentIssue false

Ion Conductivity of Nasicon Ceramics: Effects of Texture and Doping With B203 and A12 O3

Published online by Cambridge University Press:  21 February 2011

Jakob W. Høj
Affiliation:
Institute of Mineral Industry, Technical University of Denmark, DK -2800 Lyngby, Denmark
John Engell
Affiliation:
Institute of Mineral Industry, Technical University of Denmark, DK -2800 Lyngby, Denmark
Get access

Abstract

The Nasiconss, Na1+XZr2SiXP3Xo12 O<X<3, includes some of the best solid state sodium conductors known today. Compositions in the interval 1.6<X<2.6 show conductivities comparable to the best aβ-alumina ceramics. It is well known that the ion conductivity of 8-alumina is strongly dependent on the texture of the ceramic. Here a similar behaviour is reported for Nasicon ceramics. Ceramics of the bulk composition Na2.94 Zr1.49Si2. 20P0.80O10.85 were prepared by a gel method. The final ceramics consist of Nasicon crystals with X=2.14 and a glass phase. The grain size and texture of the ceramics were controlled by varying the thermal history of the gel based raw materials and the sintering conditions. The room temperature resistivity of the resulting ceramics varies from 3.65 103 ohm cm to 1.23 10 ohm cm. Using the temperature comparison method and estimates of the area of grain boundaries in the ceramics, the resistivity of the Nasicon phase is estimated to be 225 ohm cm at 25°C. B203 - or Al2O3 -doping of the glass bearing Nasicon ceramic lower the room temperature resistivity by a factor 2 to 5. The dopants do not substitute into the Nasicon phase in substantial amounts.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1) Alpen, v.U., Bell, M.F. & Wichelhaus, W.: Mat. Res. Bull. 14 (1979) 13171322.Google Scholar
(2) Alpen, v.U., Bell, M.F. & Hofer, H.H.: Solid State Ionics 7 (1982) 345348.CrossRefGoogle Scholar
(3) Bayard, M.L. & Barna, G.G.: J. Electronanal. Chem. 91 (1978) 201209.Google Scholar
(4) Bogusz, W., Krok, F. & Jakubowski, W.: Solid State Ionics 2 (1981) 171174.CrossRefGoogle Scholar
(5) Boilot, J.P., Salanie, J.P., Desplanches, G. & Potier, D. Le: Mat. Res. Bull. 14 (1979) 14691477.Google Scholar
(6) Boilot, J.P., Colomban, Ph. & Collin, G.: Solid State Ionics 18/19 (1986) 974980.Google Scholar
(7) Boilot, J.P., Collin, G. & Colomban, Ph.: Mat. Res. Bull. 22 (1987) 669676.CrossRefGoogle Scholar
(8) Clearfield, A., Subramanian, M.A., Rudolf, P. R. & Moini, A.: Solid State Ionics 18/19 (1986) 1320.CrossRefGoogle Scholar
(9) colomban, Ph.: Solid State Ionics 21 (1986) 97115.Google Scholar
(10) Engell, J., Mortensen, S. & Moller, L.: Solid State Ionics 9&10 (1983) 877884.Google Scholar
(11) Engell, J. & Mortensen, S. (Radiometer A/S): European Patent 0126103.Google Scholar
(12) Engell, J., Jensen, O.J., Mortensen, S. & Dueholm, H.: Generel og Anvendt Elektrokemii Danmark, Symp. 9/4 (1986) 3738.Google Scholar
(13) Engell, J., Dalskov, N. & Hoj, J.: 6th. Inter. Conf. SSI, Garmisch-Partenkirchen, FRG, (1987). ext. abst.Google Scholar
(14) Feist, T., Davies, K. & Vogel, E.: Thermochimica Acta 106 (1986) 5761.CrossRefGoogle Scholar
(15) Goodenough, J.B., Hong, H.Y-P. & Kafalas, J. A.: Mat. Res. Bull. 11 (1976) 203220.Google Scholar
(16) Gordon, R.S., Miller, G.R., McEntire, B.J., Besk, E.D. & Rasmussen, J.R.: Solid State Ionics 3/4 (1981) 243248.CrossRefGoogle Scholar
(17) Hjuler, H.A., Bjerrum, N.J., Engell, J.E. & Hoj, J.: In Tran & Skyllas-Kazacos (Eds.): Electrochemistry. Proc. 7th Australian Electrochemistry Conf. 15–19/2-1988 (1988) 7376.Google Scholar
(18) Hong, H.Y.-P.: Mat. Res. Bull. 11 (1976) 173182.Google Scholar
(19) Hooper, A.: J. Electroanal. Chem. 109 (1980) 161166.CrossRefGoogle Scholar
(20) Hoj, J., Engell, J. & Dalskov, N.: 6th. Inter. Conf. SSI, Garmisch-Partenkirchen, FRG, (1987). ext. abst.Google Scholar
(21) Hoj, J.W.: Licentiatafhandling (IMI, Technical Univ. Denmark 1988) 1289.Google Scholar
(22) Kafalas, J.A. & Cave, R.J.: In Vashishta, Mundy & Shenoy (Eds.): Fast ion transport in solids, electrodes and electrolytes. (Elsevier 1979) 419422.Google Scholar
(23) Kleitz, M., Million-Brodaz, J.F. & Fabry, P.: Solid State Ionics 22 (1987) 295303.Google Scholar
(24) Kohler, H. & Schulz, H.: Solid State Ionics 9/10 (1983) 795798.Google Scholar
(25) Kreuer, D.K., Kohler, H. Warhus, U. & Schulz, H.: Mat. Res. Bull. 21 (1986) 149159.Google Scholar
(26) Maruyama, T., Saito, Y., Matsumoto, Y. & Yano, Y.: Solid State Ionics 17 (1985) 281286.CrossRefGoogle Scholar
(27) Maruyama, T., Sasaki, S. & Saito, Y.: Solid State Ionics 23 (1987) 107112.Google Scholar
(28) Maruyama, T., Ye, Xu-Yun & Saito, Y.: Solid State Ionics 23 (1987) 113117.CrossRefGoogle Scholar
(29) Powers, R.W.: In Mahan, G.D. & Roth, W.L. (Eds.): Superionic Conductors. (Plenum Press. New York. 1976) 351369.Google Scholar
(30) Powers, R.W. & Mitoff, S.P.: In Hagenmuller & Van Gool (Eds.): Solid Electrolytes. (Academic Press 1978) 123144.Google Scholar
(31) Susman, S., Delbeq, C.J., McMillan, J.A. & Roche, M.F.: Solid State Ionics 9&10 (1983) 667673.Google Scholar
(32) Yde-Andersen, S., Lundsgaard, J.S., Moller, L. & Engell, J.: Solid State Ionics 14 (1984) 7379.Google Scholar