Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-25T01:19:54.933Z Has data issue: false hasContentIssue false

Ion Channeling Study of Epitaxial Growth of α-Fe on H-Terminated Si (111) Surfaces

Published online by Cambridge University Press:  21 February 2011

M. M. Karmarkar
Affiliation:
Department of Physics, Wayne State University, Detroit, MI 48202
K. R. Padmanabhan
Affiliation:
Department of Physics, Wayne State University, Detroit, MI 48202
Y.-T. Cheng
Affiliation:
Physical Chemistry, General Motors Research Laboratories, Warren, MI 48090–9055
Y. L. Chen
Affiliation:
Analytical Chemistry, General Motors Research Laboratories, Warren, MI 48090–9055
Get access

Abstract

Epitaxial α-Fe films deposited on H-terminated Si(111) surfaces by electron beam evaporation in ultra high vacuum were studied using ion channeling/Rutherford Backscattering spectrometry (RBS). A 700 Å thick Fe film deposited on a Si(1 11) substrate at room temperature has a surface minimum yield, χmin, of 22% at 2 MeV energy of 4He+ ions along Si <111>. A rapidly increasing yield in the aligned spectrum with the depdi of the film shows the presence of defects throughout the film. The sharp lower energy edge of the Fe signal indicates the absence of an amorphous region or a suicide layer at the interface. This establishes epitaxial growth of iron film on Si(111), a result supported by x-ray diffraction and transmission electron microscopy studies. A 700 Å thick iron film deposited at 300 °C shows a surface minimum yield of 12%. Ion channeling/ backscattering spectra of 1400 Å and 3000 Å thick Fe films deposited at 300 °C on Si(111) substrates show a χmin of about 3% for both films, indicating a substantial reduction in the defect density in the thicker Fe films. Etching of Si(111) substrates in either a 10% HF solution or a NH4F solution does not change the crystalline quality of the iron films significantly.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bauer, E. G., Dodson, B. W., Ehrlich, D. J., Feldman, L. C., Flynn, J. P., Geis, M. W., Harbison, J. P., Matyi, R. J., Peercy, P. S., Petroff, P. M., Phillips, J. M., Stringfellow, G. B., and Zangwill, A., J. Mater. Res. 5, 852 (1990).CrossRefGoogle Scholar
2. Prinz, G. A., Science 250, 1092 (1990).CrossRefGoogle Scholar
3. Youdou, Zheng, Rong, Zhang, Yong, Yan, Dung, Feng, Kim, T. W., and Mc-Combe, B. D., Appl. Phy. A 50, 237 (1990).Google Scholar
4. Cheng, Y.-T., Chen, Y.-L., Karmarkar, M. M., Ming, W.-J., Appl. Phy. Lett. 59 (8), 953 (1991).CrossRefGoogle Scholar
5. Feldman, L. C, Mayer, J. W., Picraux, S. T., Materials Analysis By Ion Channeling,(Academic Press, 1982).Google Scholar
6. Higashi, G. S., Chabal, Y. J., Trucks, G. W., and Raghavachari, K., Appl. Phys. Lett. 56, 656 (1990).CrossRefGoogle Scholar
7. Higashi, G. S., Becker, R. S., Chabal, Y. J., and Becker, A. J., Appl. Phy. Lett. 58, 1656 (1991).CrossRefGoogle Scholar
8. Chu, W. K., Mayer, J. W., and Nicolet, M. A., Backscattering Spectrometrv, (Academic Press, New York, 1978).Google Scholar
9. Appleton, B. R. and Foti, G., Ion Beam Handbook for Material Analysis (Academic Press, New York, 1977).Google Scholar
10. Lau, S. S., Feng, J. S.-Y., Olowolafe, J. O. and Nicolet, M.-A., Thin Solid Films 25 415 (1978).CrossRefGoogle Scholar
11. Cheng, Y.-T., Chen, Y.-L., Karmarkar, M. M., Meng, W.-J., Mat. Res. Soc. Symp. Proc. 221, 187 (1991).CrossRefGoogle Scholar