Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-18T23:07:28.150Z Has data issue: false hasContentIssue false

Ion Beam-induced Quantum Dot Synthesis in Glass

Published online by Cambridge University Press:  01 February 2011

Harry Bernas
Affiliation:
bernas@csnsm.in2p3.fr, CSNSM-CNRS, Bat. 108, University Paris-Sud 11, Orsay, 91405, France, +33 1 6915 5222, +33 1 6915 5268
Roch Espiau de Lamaëstre
Affiliation:
roch.espiau-de-lamaestre@cea.fr, CSNSM-CNRS, Bat. 108, University Paris-Sud 11, Orsay, 91405, France
Get access

Abstract

Irradiation-induced processes are often considered only in their nonequilibrium aspects. The purpose of this brief review is to show that chemistry, and particularly redox properties, play a major role in the thermal evolution of such systems and generally cannot, therefore, be neglected. This is exemplified by the synthesis of Ag nanoclusters in glasses and silica, under both low (gamma-ray) and high (MeV ion) deposited energy density irradiation conditions. The nanocluster formation mechanism is shown to be similar to the latent image formation process in photography. The corresponding information was used to control nucleation and growth of PbS clusters in glasses, leading to promising optical properties. In the course of these studies, we also showed that lognormal size distributions characterize the absence of information on the nanocluster formation process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mattei, G. and Mazzoldi, P., Rev. Nuovo. Cim. 28 (7), 1 (2005)Google Scholar
2. Cataruzza, E., Nucl. Inst. Meth. Phys. Res. B169, 141 (2000)Google Scholar
3. Lamaestre, R. Espiau de, Béa, H., Bernas, H., Belloni, J. and Marignier, J.L., preprint http://arXiv.org (cond-mat 0703510)Google Scholar
4. Lamaestre, R. E. de, Bernas, H., Jomard, F. and Majimel, J., J. Non-Cryst. Sol. 351, 3031 (2005)Google Scholar
5. Lamaestre, R. E. de, Jomard, F., Majimel, J. and Bernas, H., J. Phys. Chem. B109,19148 (2005)Google Scholar
6. Lamaestre, R. E. de, Bernas, H., Ricolleau, C. and Jomard, F., Nucl. Inst. Meth. Phys. Res. B242, 214 (2006)Google Scholar
7. Lamaestre, R. E. de and Bernas, H., J. Appl. Phys. 98, 104310 (2005)Google Scholar
8. Lamaestre, R. E. de, Bernas, H., Pacifici, D., Franzo, G. and Priolo, F., Appl. Phys. Lett. 88, 181115 (2006)Google Scholar
9. Gaponenko, S. V., Optical Properties of Semiconductor Nanocrystals, Cambridge Univ. Press, Cambridge, UK (1998)Google Scholar
10. Valentin, E., Bernas, H., Ricolleau, C. and Creuzet, F., Phys. Rev. Lett. 86, 99 (2001)Google Scholar
11. Lifshitz, I. M. and Slyosov, V. V., J. Phys. Chem. Solids 28, 35 (1961)Google Scholar
12. Wagner, C., Z. Elektrochem. 65, 58 (1961)Google Scholar
13. Lamaéstre, R. E. de and Bernas, H., Phys. Rev. B73, 125317 (2006) and refs. thereinGoogle Scholar
14. Rosen, J. M., J. Colloid Interface Sci. 99, 9 (1984)Google Scholar