Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T20:45:34.107Z Has data issue: false hasContentIssue false

Investigating Minority-Carrier Traps in p-type Cu(InGa)Se2 Using Deep Level Transient Spectroscopy

Published online by Cambridge University Press:  01 February 2011

Steven W. Johnston
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401, U.S.A.
Jehad A. M. AbuShama
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401, U.S.A.
Rommel Noufi
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401, U.S.A.
Get access

Abstract

Measurements of p-type Cu(InGa)Se2 (CIGS) using deep-level transient spectroscopy (DLTS) show peaks associated with minority-carrier traps, even though data were collected using reverse bias conditions not favorable to injecting minority-carrier electrons. These DLTS peaks occur in the temperature range of 50 to 150 K for the rate windows used and correspond to electron traps having activation energies usually in the range of 0.1 to 0.2 eV for alloys of CIS, CGS, and CIGS. The peak values also depend on the number of traps filled. For short filling times of 10 μs to 100 μs, a small peak appears. As the DLTS filling pulse width increases, the peak increases in response to more traps being filled, but it also broadens and shifts to lower temperature suggesting that a possible series of trap levels, perhaps forming a defect band, are present. The peaks usually saturate in a timeframe of seconds. These filling times are sufficient for electrons to fill traps near the interface from the n-type side of the device due to a thermionic emission current. Admittance spectroscopy data for the same samples are shown for comparison.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ramanathan, K., Contreras, M. A., Perkins, C. L., S. Asher, Hasoon, F. S., Keane, J., Young, D., Romero, M., Metzger, W., Noufi, R., Ward, J., and Duda, A., Prog. Photovolt: Res. Appl. 11, 225 (2003).Google Scholar
2 Jiyon, S., Li, S. S., Huang, C. H., Anderson, T. J., and Crisalle, O. D., Proceedings of 3rd World Conference on Photovoltaic Energy Conversion, (IEEE Press, NJ, 2003) pp. 555558.Google Scholar
3 Lang, D. V., J. Appl. Phys. 45, 3023 (1974).Google Scholar
4 Weiss, S. and Kassing, R., Solid-State Electron. 31, 1733 (1988).Google Scholar
5 Blood, P. and Orton, J. W., The Electrical Characterization of Semiconductors: Majority Carriers and Electron States (Academic, San Diego, 1992).Google Scholar
6 Walter, T., Herberholz, R., Muller, C., and Schock, H. W., J. Appl. Phys. 80, 4411 (1996).Google Scholar
7 Yastrubchak, O., Wosinski, T., Makosa, A., Figielski, T., and Toth, A. L., Physica B 308-310, 757 (2001).Google Scholar
8 Herberholz, R., Igalson, M., and Schock, H. W., J. Appl. Phys. 83, 318 (1998).Google Scholar
9 Zabierowski, P., and Edoff, M., Thin Solid Films 480-481, 301 (2005).Google Scholar
10 Heath, J. T., Cohen, J. D., and Shafarman, W. N., J. Appl. Phys. 95, 1000 (2004).Google Scholar
11 Schroder, D. K., Semiconductor Material and Device Characterization (Wiley, New York, 1990).Google Scholar
12 Johnston, S. W., Kurtz, S., Friedman, D. J., Ptak, A. J., Ahrenkiel, R. K., and Crandall, R. S., Appl Phys. Lett. 86, 072109 (2005).Google Scholar
13SimWindows is a semiconductor device simulator originally developed at the Optoelectronics Computing Sytems Center at the University of Colorado, Boulder. Also, see http://www-ocs.colorado.edu/SimWindows.Google Scholar
14 Wei, S. H. and Zunger, A., Appl. Phys. Lett. 63, 2549 (1993).Google Scholar
15 Schmid, D., Ruckh, M., and Schock, H. W., Solar Energy Materials and Solar Cells 41/42, 281 (1996).Google Scholar
16 Sze, S. M., Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981).Google Scholar
17 Kurtz, S., Johnston, S. W., and Branz, H. M., Appl. Phys. Lett. 86, 113506 (2005).Google Scholar