Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-23T19:45:47.740Z Has data issue: false hasContentIssue false

Interpretation of Transient Photocurrents in Coplanar and Sandwich PIN Microcrystalline Silicon Structures

Published online by Cambridge University Press:  21 March 2011

Steve Reynolds
Affiliation:
School of Computing and Advanced Technologies, University of Abertay Dundee, Bell Street, Dundee U.K.
Vladimir Smirnov
Affiliation:
School of Computing and Advanced Technologies, University of Abertay Dundee, Bell Street, Dundee U.K.
Charlie Main
Affiliation:
School of Computing and Advanced Technologies, University of Abertay Dundee, Bell Street, Dundee U.K.
Friedhelm Finger
Affiliation:
Forschungszentrum Jülich, Institute for Photovoltaics, D-52425 Jülich, Germany.
Reinhard Carius
Affiliation:
Forschungszentrum Jülich, Institute for Photovoltaics, D-52425 Jülich, Germany.
Get access

Abstract

We report on the use of coplanar transient photoconductivity and post-transit time-of-flight spectroscopy techniques in the study of carrier transport in microcrystalline silicon films prepared over a range of crystallinities. Coplanar samples are susceptible to post-deposition oxidation and reversible adsorption of atmospheric gases, which may alter the apparent density of states. Coplanar measurements suggest lower deep defect densities in more highly crystalline films, but this is due at least in part to an increased occupancy of these states. A comparison of results obtained using both techniques suggests anisotropic transport, with reduced band tailing (greater structural order) along the direction of film growth, a larger defect concentration around the column boundaries, and a higher defect density within the amorphous tissue than in optimised single-component amorphous silicon films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Shah, A.V., Meier, J., Vallat-Sauvain, E., Wyrsch, N., Kroll, U. and Droz, C., Solar Energy Materials & Solar Cells 78, 469 (2003)Google Scholar
2. Houben, L., Luysberg, M., Hapke, P., Carius, R., Finger, F. and Wagner, H., Philos. Mag. A 77, 1447 (1998).Google Scholar
3. Koĉka, J., Fejfar, A., Stuchlíková, H., Stuchlík, J., Fojtík, P., Mates, T., Rezek, B., Luterová, K., Ŝvrĉek, V. and Pelant, I., Solar Energy Materials & Solar Cells 78, 493 (2003).Google Scholar
4. Finger, F., Carius, R., Dylla, T., Klein, S., Okur, S., Günes, M., IEE Proc. CDS 150, 300 (2003).Google Scholar
5. Meier, J., Dubail, S., Cuperus, J., Kroll, U., Platz, R., Torres, P., Selvan, J.A. Anna, Pernet, P., Beck, N., Vaucher, N. Pellaton, Hof, Ch., Fischer, D., Keppner, H., Shah, A., J. Non Cryst. Solids 227–230, 1250 (1998).Google Scholar
6. Klein, S., Finger, F., Carius, R., Wagner, H. and Stutzmann, M., Thin Solid Films 395, 305 (2001).Google Scholar
7. Klein, S., Finger, F., Carius, R., Rech, B., Houben, L., Luysberg, M. and Stutzmann, M., MRS Symp. Proc. 715, A21.2.1 (2002).Google Scholar
8. Reynolds, S., Main, C., Webb, D.P. and Rose, M.J., Phil. Mag. B 80, 547 (2000).Google Scholar
9. Reynolds, S., Smirnov, V., Main, C., Carius, R., Finger, F., Mat. Res. Soc. Symp. Proc. 715, A21.2.1, (2002).Google Scholar
10. Brüggemann, R, J. Mater. Sci. – Mater. El. 14, 300 (2003).Google Scholar
11. Smirnov, V., Reynolds, S., Main, C., Finger, F. and Carius, R., ICAMS20 Conference (Campos do Jordao, Brazil, August 2003). To appear in J. Non-Cryst. Solids (2004).Google Scholar
12. Smirnov, V., Reynolds, S., Finger, F., Main, C. and Carius, R., these proceedings.Google Scholar
13. Reynolds, S., Smirnov, V., Main, C., Carius, R., Finger, F., Mat. Res. Soc. Symp. Proc. 762, A4.3.1, (2003).Google Scholar
14. Seynhaeve, G.F., Barclay, R.P., Adriaenssens, G.J. and Marshall, J.M., Phys. Rev. B 39, 10196 (1989).Google Scholar
15. Unold, T., Brüggemann, R., Kleider, J.P., Longeaud, C., J. Non-Cryst. Sol. 266–269, 325 (2000).Google Scholar
16. Hattori, K., Musa, Y., Murakami, N., Deguchi, N. and Okamoto, H., J. Appl. Phys. 94, 5071 (2003).Google Scholar
17. Finger, F., Klein, S., Dylla, T., Neto, A.L. Baia, Vetterl, O. and Carius, R., MRS Symp. Proc. 715, A16.3.1 (2002).Google Scholar