Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-22T11:54:59.014Z Has data issue: false hasContentIssue false

Interface Orientation Distribution during Grain Growth in Bulk SrTiO3 Measured by Means of 3D X-Ray Diffraction Contrast Tomography

Published online by Cambridge University Press:  10 May 2012

Melanie Syha
Affiliation:
Karlsruhe Institute of Technology, Institute for Applied Materials, Kaiserstr. 12, 76128 Karlsruhe, Germany
Wolfgang Rheinheimer
Affiliation:
Karlsruhe Institute of Technology, Institute for Applied Materials, Kaiserstr. 12, 76128 Karlsruhe, Germany
Michael Bäurer
Affiliation:
Karlsruhe Institute of Technology, Institute for Applied Materials, Kaiserstr. 12, 76128 Karlsruhe, Germany
Erik M. Lauridsen
Affiliation:
Risø DTU National Laboratory, Frederiksborgvej 399, 4000 Roskilde, Denmark
Wolfgang Ludwig
Affiliation:
European Synchrotron Radiation Facility, 6 rue Jules Horowitz, BP 220, 38043 Grenoble, France
Daniel Weygand
Affiliation:
Karlsruhe Institute of Technology, Institute for Applied Materials, Kaiserstr. 12, 76128 Karlsruhe, Germany
Peter Gumbsch
Affiliation:
Karlsruhe Institute of Technology, Institute for Applied Materials, Kaiserstr. 12, 76128 Karlsruhe, Germany Fraunhofer IWM, Freiburg, Germany
Get access

Abstract

3D x-ray diffraction contrast tomography (DCT) is a non-destructive technique for the determination of grain shape and crystallography in polycrystalline bulk materials. Using this technique, a strontium titanate specimen was repeatedly measured between annealing steps.. A systematic analysis of the growth history of selected grains before and after the ex-situ annealing step allows to extract the topological and morphological changes during grain growth. Furthermore, misorientation as well as interface orientation information of the microstructure reconstructions have been determined. The interface normal distribution clearly shows a preference for (100) oriented interfaces in the selected grains when annealed at 1600°C. This observation can be connected to existent interfacial energy estimations resulting from capillarity vector reconstructions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lee, S., Sigle, W., Kurtz, W. and Rühle, M.. Acta Mat., 51 975 (2003)Google Scholar
2. Johnson, G., King, A., Honnicke, M.G., Marrow, J. and Ludwig, W., J. Appl. Cryst. 41, 310 (2008)Google Scholar
3. Sano, T., Saylor, D.M., and Rohrer, G.S., J. Amer. Ceram. Soc., 86, 1933 (2003)Google Scholar
4. Bäurer, M., Weygand, D., Gumbsch, P. and Hoffmann, M.. Scripta Mat., 61 584 (2009)Google Scholar
5. Bäurer, M., Kungl, H. and Hoffmann, M.. Journal of the American Ceramic Society, 92 601 (2009)Google Scholar
6. Syha, M., Rheinheimer, W., Bäurer, M., Lauridsen, E.M., Ludwig, W., Weygand, D., and Gumbsch, P., Scripta Mat. 66, 1 (2011)Google Scholar
7. Ludwig, W., Reischig, P., King, A., Herbig, M., Lauridsen, E.M., Johnson, G., Marrow, T. and Buffiere, J., Rev. Sci. Instr. 80, 33905 (2009)Google Scholar
8. Bäurer, M., Shih, S. J., Bishop, Catherine M., Harmer, M. P., Cockayne, D., Hoffmann, M. J., Acta. Mat., 58, 290 (2010)Google Scholar