Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-23T16:04:59.110Z Has data issue: false hasContentIssue false

Interdiffusion of Amorphous Si/Ge Multilayers Under Hydrostatic Pressure

Published online by Cambridge University Press:  15 February 2011

Steven D. Theiss
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge, MA 02138
S. Mitha
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge, MA 02138
F. Spaepen
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge, MA 02138
M. J. Aziz
Affiliation:
Division of Applied Sciences, Harvard University, Cambridge, MA 02138
Get access

Abstract

We report initial results of an x-ray diffraction study of the pressure-dependence of the interdiffusion rate in amorphous Si/Ge Multilayers. Anneals were performed in a diamond anvil cell at 700 K for various pressures and durations. Interdiffusion was measured by Monitoring the rate of decay of the artificial Bragg peaks associated with the multilayer periodicity. A consistent increase in diffusivity was seen with pressure, characterized by an activation volume of -25±11 percent of the atomic volume of Si. An atomistic mechanism that Might account for such behavior is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Park, B., Spaepen, F., Poate, J.M., Jacobson, D.C. and Priolo, F., J. Appl. Phys., 68, 4556 (1990).Google Scholar
2. Müller, G. and Kalbitzer, S., Non-Cryst. Solids 278 (1977).Google Scholar
3. Thomas, P.A., Brodsky, M.H., Kaplan, D., and Lepine, D., Phys. Rev. B, 18, 3059 (1978).Google Scholar
4. Pantelides, S.T., Phys. Rev. Lett., 57, 2979 (1986).Google Scholar
5. Shewmon, P.G., Diffusion in Solids. (J. Williams Book Co. Jenks, OK, 1983) p. 61.Google Scholar
6. Werner, M., Mehrer, H. and Hochhiemer, H.D., Phys. Rev. B, 32, 3930 (1985)Google Scholar
7. Antonelli, A., Bernholc, J., Phys. Rev. B, 40, 10643 (1989).Google Scholar
8. Emrick, R.M., Phys. Rev., 122, 1720 (1961).Google Scholar
9. Lu, G.Q., Nygren, E. and Aziz, M.J., J. Appl. Phys., 70, 5323 (1991).Google Scholar
10. Spaepen, F. and Turnbull, D., AIP Conf. Proc. 50, 73 (1979).Google Scholar
11. Fratello, V.J., Hays, J.F., Spaepen, F. and Turnbull, D., J. Appl. Phys., 51, 6160 (1980).Google Scholar
12. Spaepen, F., Greer, A.L., Kelton, K.F. and Bell, J.L., Rev. Sci. Inst., 56, 1340 (1985).Google Scholar
13. Witvrouw, A. and Spaepen, F., J. Appl. Phys., 74, 7154 (1993).Google Scholar
14. Hess, N. and Schiferl, D., J. Appl. Phys., 71, (1992).Google Scholar
15. Prokes, S.M. and Spaepen, F. Mater. Res. Soc. Symp. Proc. 77, pp. 305310 (1987).Google Scholar