Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T20:22:52.936Z Has data issue: false hasContentIssue false

Integration of ALD-TaN Liners on Nanoporous Dielectrics

Published online by Cambridge University Press:  01 February 2011

Bum Ki Moon
Affiliation:
2070 Route 52, Zip 32A, Hopewell Junction, NY 12533, USA
Tadashi Iijima
Affiliation:
2070 Route 52, Zip 32A, Hopewell Junction, NY 12533, USA
Sandra Malhotra
Affiliation:
2070 Route 52, Zip 32A, Hopewell Junction, NY 12533, USA
Andrew Simon
Affiliation:
2070 Route 52, Zip 32A, Hopewell Junction, NY 12533, USA
Thomas Shaw
Affiliation:
2070 Route 52, Zip 32A, Hopewell Junction, NY 12533, USA
Todd Ryan
Affiliation:
2070 Route 52, Zip 32A, Hopewell Junction, NY 12533, USA
Cathy Labelle
Affiliation:
2070 Route 52, Zip 32A, Hopewell Junction, NY 12533, USA
Nick Fuller
Affiliation:
2070 Route 52, Zip 32A, Hopewell Junction, NY 12533, USA
Tibor Bolom
Affiliation:
2070 Route 52, Zip 32A, Hopewell Junction, NY 12533, USA
Derren Dunn
Affiliation:
2070 Route 52, Zip 32A, Hopewell Junction, NY 12533, USA
Philip Flaitz
Affiliation:
2070 Route 52, Zip 32A, Hopewell Junction, NY 12533, USA
Sanjay Mehta
Affiliation:
2070 Route 52, Zip 32A, Hopewell Junction, NY 12533, USA
Keishi Inoue
Affiliation:
2070 Route 52, Zip 32A, Hopewell Junction, NY 12533, USA
Vincent McGahay
Affiliation:
2070 Route 52, Zip 32A, Hopewell Junction, NY 12533, USA
Get access

Abstract

Ultra-thin ALD-TaN/PVD-Ta liners have been developed to prevent Cu diffusion into porous interlayer dielectric (ILD) materials envisioned for future copper interconnections. The porous ultra-low k (p-ULK) film is prepared using the spin-on method, and typical k-value and the average pore size of p-ULK used in this paper are 2.3 and 2-3 nm, respectively. Interaction and phenomena at the ILD/ALD-TaN interface have been investigated, and the electrical measurements of samples with a bi-layered ALD-TaN/PVD-Ta barrier were performed after completing the metallization and CMP process.

A deep penetration of ALD-TaN was observed on the as-deposited p-ULK, which is due to the interconnected pore structures. However, the surface of the p-ULK is drastically changed after the etch process, where changes are attributed to plasma damage and re-deposition of etched species. Pores can therefore be sealed during the etch process. Furthermore, the plasma damage makes the sidewall more hydrophilic, which may promote the growth of ALD-TaN layer. Based on EELS and EDS profiles, there is no signature of TaN penetration into the etched p-ULK at M1 level with a sharp Ta peak, which indicates excellent stability of ultra-thin ALD-TaN liner.

An oxidation test in air ambient and at elevated temperature confirmed the barrier properties of the stacked ALD-TaN/PVD-Ta layers. Any weak point in the barrier allows the Cu to oxidize and to make a color change under an optical microscope. However, all of our samples showed no color change, which implies that the barrier is very uniform and stable. Electrical properties measured at M1 showed excellent results. Our results demonstrate the ability to successfully integrate ALD-TaN barriers with a nanoporous ULK film.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Murarka, S. P., Mat. Sci. Eng. 19, 87 (1997).Google Scholar
[2] Wu, Y. Y., Kohn, A., and Eizenberg, M., J. Appl. Phys. 95, 6167 (2004).Google Scholar
[3] Kim, S. H., Oh, S. S., Kim, H. M., Kang, D. H., Kim, K. B., Li, W. M., Haukka, S., and Tuominen, M., Mat. Res. Soc. Symp. Proc. 766, 445 (2003).Google Scholar
[4] Hoyas, A. M., Schuhmacher, J., Shamiryan, D., Waeterloos, J., Besling, W., Celis, J. P., and Maex, K., J. Appl. Phys. 95, 381 (2004).Google Scholar
[5] Chung, H., Chang, M., Chu, S., Kumar, N., Goto, K., Maity, N., Sankaranarayanan, S., Okamura, H., Ohtsuka, N., and Ogawa, S., ISSM 2003, 454 (2003).Google Scholar
[6] Senkevich, J. J., Jezewski, C., Lu, D., Lanford, W. A., Wang, G. C., and Lu, T. M., Mat. Res. Soc. Symp. Proc. 812, 3 (2004).Google Scholar
[7] Shaw, T.et al., unpublished.Google Scholar