Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-19T19:39:56.624Z Has data issue: false hasContentIssue false

In-situ Studies of a Novel Sodium Flame Process for Synthesis of Fine Particles

Published online by Cambridge University Press:  15 February 2011

Kristen L. Steffens
Affiliation:
National Institute of Standards and Technology, Gaithersburg, MD20899, mrz@tiber.nist.gov
Michael R. Zachariah
Affiliation:
National Institute of Standards and Technology, Gaithersburg, MD20899, mrz@tiber.nist.gov
Douglas P. Dufaux
Affiliation:
Mechanical Engineering Department, Washington University, St. Louis, MO63130
Richard L. Axelbaum
Affiliation:
Mechanical Engineering Department, Washington University, St. Louis, MO63130
Get access

Abstract

This study focuses on the optical characterization of a novel method of forming nanoscale titanium and boron particles, which can be used to form ceramic precursors such as TiB2. TiCl4 or BCl3 reacts with heated Na vapor in a counterflow diffusion flame reactor. After Na strips the Ti or B of its Cl atoms, nanosize Ti or B particles form and become encased in NaCl, which helps to prevent agglomeration and oxidation. The two-dimensional spatial distribution of the Na dimer has been optically interrogated using planar laser-induced fluorescence (PLIF) to clarify the influence of the concentration distributions and transport on particle formation rates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Elders, J., Voorst, J. D. W. v., J. Appl. Phys. 75, 553 (1994).Google Scholar
2. Siegel, R. W., Annu. Rev. Mater. Sci. 21, 559 (1991).Google Scholar
3. Gleiter, H., Prog. Mater. Sci. 33, 223 (1990).Google Scholar
4. Bates, S. E., Buhro, W. E., Frey, C. A., Sastry, S. M. L., Kelton, K. F., J. Mater. Res. 10, 2599 (1995).Google Scholar
5. Zachariah, M. R., Aquino, M. I., Shull, R. D., Steel, E. B., NanoStruct. Mater. 5, 383 (1995).Google Scholar
6. Calcote, H. F., Felder, W., Twenty-Fourth Symposium (International) on Combustion, Pittsburgh (The Combustion Institute, 1992), p. 1869.Google Scholar
7. Glassman, I., Davis, K. A., Brezinsky, K., Twenty-Fourth Symposium (International) on Combustion, Pittsburgh (The Combustion Institute, 1992), p. 1877.Google Scholar
8. DuFaux, D. P., Axelbaum, R. L., Comb. and Flame 100, 350 (1995).Google Scholar
9. Mellor, J. W., A Comprehensive Treatise on Inorganic and Theoretical Chemistry (Longmans, Green and Co., New York, 1922), vol. II, p. 469.Google Scholar
10. Polanyi, M., Schay, G., Z. Physik 47, 814 (1928).Google Scholar
11. Heller, W., Polanyi, M., Faraday Society Transactions 32, 633 (1936).Google Scholar
12. Naegeli, D. W., Palmer, H. B., Eleventh Symposium (International) on Combustion, Pittsburgh (The Combustion Institute, 1967), p. 1161.Google Scholar
13. Axelbaum, R. L., DuFaux, D. P., Frey, C. A., Kelton, K. F., Lawton, S. A., Rosen, C. J., Sastry, S. M. L., J. Mater. Res. (accepted).Google Scholar
14. McMillin, B. K., Zachariah, M. R., J. Appl. Phys. 11, 1 (1995).Google Scholar
15. McMillin, B. K., Biswas, P., Zachariah, M. R., J. Mater. Res. (accepted).Google Scholar
16. Sittig, M., Sodium Its Manufacture, Properties and Uses (Reinhold Publishing Corporation, New York, 1956), p. 529.Google Scholar
17. Kusch, P., Hessel, M. M., J. Chem. Phys. 68, 2591 (1978).Google Scholar