Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-07-04T19:05:42.210Z Has data issue: false hasContentIssue false

In-Situ Monitoring Of Etch By-Products During Reactive Ion Beam Etching Of Gaas In Chlorine/Argon

Published online by Cambridge University Press:  10 February 2011

J. W. Lee
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
S. J. Pearton
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
C. R. Abernathy
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
G. A. Vawter
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
R. J. Shul
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
M. M. Bridges
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
C. G. Willison
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Get access

Abstract

Mass spectrometry of the plasma effluent during Reactive Ion Beam Etching (RIBE) of GaAs using an Inductively Coupled Plasma (ICP) source and a Cl2/Ar gas chemistry shows that AsCl3, AsCl2 and AsCl are all detected as etch products for As, while GaCl2 is the main signal detected for the Ga products. The variation in selective ion currents for the various etch products has been examined as a function of chuck temperature (30–100°C), percentage Cl2 in the gas flow, beam current (60–180 mA) and beam voltage (200–800 V). The results are consistent with AsCl3 and GaCl3 being the main etch product species under our conditions, with fragmentation being responsible for the observed mass spectra.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hou, H., Zhang, Z., Chen, S., Su, C., Yan, W. and Vernon, M., Appl. Phys. Lett. 55, 801 (1989).Google Scholar
2. Ashby, C.I.H., Appl. Phys. Lett. 45, 892 (1984).Google Scholar
3. O'Brien, W.C., Paulsen-Boaz, C.M., Rhodin, T.N. and Rathbun, L.C., J. Appl. Phys. 64, 6523 (1988).Google Scholar
4. Qin, Q.Z., Li, Y.L., Jin, K., Zhang, Z.I., Yang, Y.Y., Jia, W.J. and Zheng, Q.K., Surf. Sci. 207, 142 (1988).Google Scholar
5. Skidmore, J.A., Coldren, C.A., Hu, E.L., Merz, J.L. and Asakawa, K., J. Vac. Sci. Technol. B6, 1885 (1988).Google Scholar
6. McNevin, S.C., J. Vac. Sci. Technol. B 4, 1216 (1986).Google Scholar
7. Donnelly, V.M., Flamm, D.L., Tu, C.W. and Ibbotson, D.E., J. Electrochem. Soc. 129, 2533 (1982).Google Scholar
8. Sugata, S. and Asakawa, K., J. Vac. Sci. Technol. B5, 894 (1987).Google Scholar
9. Tadokoro, T., Koyama, F. and Iga, K., Jap. J. Appl. Phys. 27, 389 (1988).Google Scholar
10. Asakawa, K. and Sugata, S., Jap. J. Appl. Phys. 22, L653 (1983.Google Scholar
11. Eddy, C.R., Glembocki, O.J., Leonhardt, D., Shamamian, V.A., Holm, R.T., Thoms, B.D., Butler, J.E. and Pang, S.W., J. Electron. Mater., Nov. 1997.Google Scholar
12. High Density Plasma Sources, ed. Popov, O. (Noyes, Parkridge, NJ 1996).Google Scholar
13. Shul, R.J., McClellan, G.B., Casalnuovo, S.A., Rieger, D.J., Pearton, S.J., Constantine, C., Barratt, C., Karlicek, R.F. Jr.,, Tran, C. and Shurman, M., Appl. Phys. Lett. 69, 1119 (1996).Google Scholar
14. Ren, F., Lee, J.W., Abernathy, C.R., Pearton, S.J., Shul, R.J., Constantine, C. and Barratt, C., Semicond. Sci. Technol. 12, 1154 (1997).Google Scholar
15. Vawter, G.A. and Ashby, C.I.H., J. Vac. Sci. Technol. B12, 3374 (1994).Google Scholar
16. Lee, J.W., et al. (to be published).Google Scholar