Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-28T14:18:23.341Z Has data issue: false hasContentIssue false

In-Situ Dynamic Transformation of Vanadyl Hydrogen Phosphate Hydrate, VOHPO4·1/2H2O, to Vanadyl Pyrophosphate Catalyst, (VO)2P2O7

Published online by Cambridge University Press:  15 February 2011

P. L. Gai
Affiliation:
Central Research & Development, DuPont Science and Engineering Laboratories, Experimental Station, Wilmington, Delaware 19880–0356.
C. C. Torardi
Affiliation:
Central Research & Development, DuPont Science and Engineering Laboratories, Experimental Station, Wilmington, Delaware 19880–0356.
Get access

Abstract

We report, for the first time, direct studies of the dynamic VOHPO4·1/2H2O precursor to (VO)2P2O7 catalyst transformation using recently developed in-situ environmental-cell, high-resolution, electron microscopy (in-situ ECELL-HREM) under controlled environments. Our observations provide fundamental evidence concerning the nature of the topotactic transformation and associated temperature regimes critical to the formation of active catalysts. The direct ECELL-HREM studies show that the structural transformation begins at ˜ 400°C, and a mixture of the precursor and pyrophosphate phases exists at ˜ 425°C. At 450°C, most of the conversion to VPO has taken place. These atomic-scale studies reveal no amorphous phases during the transformation, and that the atomic periodicity is maintained throughout. No other phases have so far been identified in the transformation. The direct studies are important in the development of selective catalysts.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hodnett, B.K., Catal. Rev.- Sci. Eng. 27, 373 (1985).Google Scholar
2. Bordes, E., Catal. Today 1, 499 (1987).Google Scholar
3. Centi, G., Catal. Today 16, 1 (1993).Google Scholar
4. Beltran-Porter, D., Beltran-Porter, A., Villeneuve, G., et al, Europ. J. Solid. State Inorg. Chem. 28, 131 (1991).Google Scholar
5. Horowitz, H. S., Blackstone, C. M., Sleight, A. W., and Teufer, G., Appl Catal 38, 193 (1988).Google Scholar
6. Bordes, E., Courtine, P., and Johnson, J. W., J. Solid State Chem. 55, 270 (1984).Google Scholar
7. Torardi, C. C. and Calabrese, J. C., Inorg. Chem. 23, 1308 (1984).Google Scholar
8. Torardi, C. C., Li, Z. G., Horowitz, H. S., Liang, W., and Whangbo, M.-H., J. Solid State Chem. 119, 349 (1995).Google Scholar
9. Amorós, P., lbáñez, R., Beltrán, A., Beltrán, D., Fuertes, A., Gomez-Romero, P., Hernandez, E. and Rodriguez-Carvajal, J., Chem. Mater. 3, 407 (1991).Google Scholar
10. Gai, P. L. and Kourtakis, K., Science, 267, 661 (1995).Google Scholar
11. Boyes, E. D. and Gai, P. L. (1995): These Proceedings.Google Scholar
12. Glasser, L. S. Dent, Glasser, F. P., and Taylor, H. F. W., Quart. Rev. (London) 16, 343 (1962).Google Scholar
13. Leonowicz, M. E., Johnson, J. W., Brody, J. F., Shannon, H. F. Jr and Newsam, J. M., J. Solid State Chem. 56, 370 (1985).Google Scholar
14. Gorbunova, Yu. E. and Linde, S. A., Sov. Phys.-Dokl. (Engl. Transl.) 24, 138 (1979).Google Scholar
15. Ebner, J. R. and Thompson, M. R., Catal. Today 16, 51 (1993).Google Scholar
16. Nguyen, P. T., Hoffman, R. D., and Sleight, A. W., Mater. Res. Bull. 30, 1055 (1995).Google Scholar
17. Gai, P. L., Catal. Rev. -Sci. Eng. 34, 1 (1992).Google Scholar
18. Boyes, E. D., Proceedings of Intemat. Congress on EM, Paris, ICEM 13, 51 (1994).Google Scholar