Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-29T11:09:35.052Z Has data issue: false hasContentIssue false

Initial Obsevation of the Crystal-Amorphous Transition and the Formation of Ripple Patterns on Silicon Induced by 7 ps Pulses at 1.05 µm

Published online by Cambridge University Press:  22 February 2011

Ian W. Boyd
Affiliation:
Center for Applied Quantum Electronics, Department of Physics, North Texas State University, Denton, Texas 76203
Steven C. Moss
Affiliation:
Center for Applied Quantum Electronics, Department of Physics, North Texas State University, Denton, Texas 76203
Thomas F. Boggess
Affiliation:
Center for Applied Quantum Electronics, Department of Physics, North Texas State University, Denton, Texas 76203
Arthur L. Smirl
Affiliation:
Center for Applied Quantum Electronics, Department of Physics, North Texas State University, Denton, Texas 76203
Get access

Abstract

We describe our preliminary observations of the interaction of short pulse 1 µm radiation with crystalline silicon. In particular we find that for 7 ps pulses, but not for 46 ps pulses, the crystal-amorphous transition can be induced on the Si surface. Additionally, we have measured the single shot melting threshold for c-Si to be 0.6 ± 0.2 J cm-2 for 7 ps pulses. The formation of ripple patterns and other surface structures with pulses as short as 4 ps is also reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. For recent reviews of the field, see Young, R. T., Wood, R. F., Ann. Rev. Mater. Sci. 12, 232 (1982);Google Scholar
Boyd, I. W., Contemporary Physics, 24, 461 (1983) and references therein.Google Scholar
2.“Laser-Solid Interactions and Transient Thermal Processing of Materials“ edited by Narayan, J., Brown, W. L., Lemons, R. A. (North-Holland, Amsterdam, 1983), and references therein.Google Scholar
3.Liu, P. L., Yen, R., Bloembergen, N., Hodgson, R. T., Appl. Phys. Lett. 34, 864 (1979).Google Scholar
4.Tsu, R., Hodgson, R. T., Fan, T. Y., Baglin, J. E. E., Phys. Rev. Lett. 42, 1356 (1979).Google Scholar
5.Cullis, A. G., Webber, H. C., Chew, N. G., Poate, J. M., Baeri, P., Phys. Rev. Lett. 49, 219 (1982).Google Scholar
6.Rozgonyi, G. A., Baumgart, H., Phillip, F., Uebbing, R., Oppolzer, H., in “Laser and Electron Beam Interactions with Solids,” edited by Appleton, B. R., Celler, G. K., (Elsevier, NY, 1982). p. 177.Google Scholar
7.Gamo, K., Muragami, K., Kawabe, M., Namba, S., Aoyagi, Y., in “Laser and Electron-Beam Solid Interactions and Materials Processing,” edited by Gibbons, J. F., Hess, L. D., and Sigmon, T. W., (North-Holland, Amsterdam, 1981), p. 97.Google Scholar
8.Bloembergen, N., Kurz, H., Liu, J. M., Yen, R., in “Laser and Electron Beam Interactions with Solids”, edited by Appleton, B. R., Celler, G. K., (Elsevier, NY, 1982), p. 3.Google Scholar
9.Walser, R. M., Becker, M. F., Ambrose, J. G., Sheng, D. Y., in “Laser and Electron Beam Solid Interactions and Materials Processing”, edited by Gibbons, J. F., Hess, L. D., Sigmon, T. W. (North-Holland, Amsterdam, 1981), p. 177.Google Scholar
10.Fauchet, P. M., Phys. Lett. 93A, 155 (1983).Google Scholar
11.Guosheng, Zhou, Fauchet, P. M., Siegman, A. E., Phys. Rev. B, 26, 5366 (1982).Google Scholar
12.Fauchet, P. M. (private communication).Google Scholar